K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2022

undefined

tham khảo tại: https://olm.vn/hoi-dap/detail/215686516317.html

27 tháng 4 2020

ta có BAHˆ=AHCˆ=AHBˆ=90BAH^=AHC^=AHB^=90

BAHˆ=ACBˆBAH^=ACB^ ( cùng phụ HACˆHAC^)

HACˆ=ABCˆHAC^=ABC^( cùng phụ BAHˆBAH^)

27 tháng 4 2020

Giải: 

Có:  HB < HC 

Mà HB là hình chiếu của AB lên BC 

HC là hình chiếu của AC lên BC 

=> AB < AC ( mối quan hệ đường xiên và hình chiếu ) 

=> ^C  < ^B  => ^C - ^B < 0 (1)

Vì \(\Delta\)ABH vuông tại B => ^B + ^HAB = 90 độ 

\(\Delta\)ACH vuông tại C => ^C + ^HAC = 90 độ 

=> ^HAB + ^B = ^C + ^HAC 

=> ^HAB - ^HAC = ^C - ^B < 0  ( theo (1))

=> ^HAB < ^HAC.

24 tháng 3 2019

A B C H 1 2

Ta có: \(HB< HC\Rightarrow AB< AC\)(đường xiên ,hình chiếu)

Trong tam giác ABC có ; \(AB< AC\Rightarrow\widehat{C}< \widehat{B}\)(góc và cạnh đối diện trong tam giác )

\(\Rightarrow90^0-\widehat{C}>90^0-\widehat{B}\)   

Do \(AH\perp BC\Rightarrow\widehat{HAC}=90^0-\widehat{B};\widehat{HAC}=90^0-C\)

\(\Rightarrow\widehat{HAB}=\widehat{HAC}\)

24 tháng 3 2019

A B C H E

Trên HC lấy điểm E sao cho HB=HE.

Suy ra E nằm giữa H và C vì HE<HC.

Xét tam giác ABE có AE đồng thời là đường cao,đường trung tuyến nên tam giác ABE cân tại A.

\(\Rightarrow AB=AE,\widehat{ABE}=\widehat{AEB}\)

Do ^AEH là góc ngoài của tam giác AEC nên \(\widehat{AEH}>\widehat{ACB}\)

Suy ra \(\widehat{ABE}>\widehat{ACB}\)hay \(AB< AC\)(quan hệ giữa góc và cạnh đối diện)

Đến đây mới áp dụng như bạn được nhé.Đề đã cho AB<AC đâu!

9 tháng 2 2019

24 tháng 12 2020

CÂU TRẢ LỜI CHÍNH XÁC NÈ

14 tháng 6 2017

Câu 1:
Xét tam giác ABH vuông tại H, ta có:
   AB2 = AH2 +  HB2 (định lý Py-ta-go)
   202  = AH2 + 162
   400  = AH2 + 256
   AH2 = 400 - 256
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   AC2 = 122  + 52
   AC2 = 144  + 25
   AC2 = 169
   AC  = \(\sqrt{169}\)= 13 (cm)

Vậy AH = 12 cm
       AC = 13 cm

Bài 2:
Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   152  = AH2 + 92
   225  = AH2 + 81
   AH2 = 225 - 81
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHB vuông tại, ta có:
   AB2 = AH2 + HB(định lý Py-ta-go)
   AB2 = 122  + 52
   AB2 = 144  + 25
   AB2 = 169
   AB  = \(\sqrt{169}\)= 13 (cm)

Vậy AB = 13 cm

17 tháng 9 2019

Câu này dễ

AH 12cm

AC13cm

AB13cm

a: Xét ΔABC có AC>AB

nên góc B>góc C

b: Xét ΔABC có AB<AC

mà HB,HC lần lượt là hình chiếu của AB,AC trên BC

nên HB<HC

c: góc B+góc C=90 độ

góc HAC+góc C=90 độ

=>góc B=góc HAC

góc C+góc B=90 độ

góc HAB+góc B=90 độ

=>góc C=góc HAB

Ta có: \(\widehat{HAB}+\widehat{B}=90^0\)(ΔHAB vuông tại H)

\(\widehat{HAC}+\widehat{C}=90^0\)(ΔHAC vuông tại H)

mà \(\widehat{HAB}< \widehat{HAC}\)

nên \(\widehat{B}>\widehat{C}\)

Xét ΔABC có \(\widehat{B}>\widehat{C}\)

mà AC,AB lần lượt là cạnh đối diện của các góc ABC và góc ACB

nên AC>AB

Xét ΔABC có

AB<AC

HB,HC lần lượt là hình chiếu của AB,AC trên BC

Do đó: HB<HC