K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2021

= 100 - 100x

10 tháng 6 2021

\(\left(x-10\right)^2-x\left(x+80\right)=x^2-20x+100-x^2-80x\)

\(=-100x+100\)

14 tháng 9 2016

cái này là hằng đẳng thức đấy bn ạ

26 tháng 12 2021

Bạn thay x vào biểu thức rồi tính thôi

a)(x-10)2-x(x+80)

(x2-2x10+100)-x2-80x

=x2-20x+100-x2-80x=-100x+100 
khi x = 0.98 
ta có 
(-100*0.98)+100=-98+100=2
b)x3-9x+27x-27
 hình như là -27x :))

 

6 tháng 1 2022

jd76jtyjtcyj

23 tháng 3 2020

\(A=\frac{2x^2+4x}{x^3-4x}+\frac{x^2-4}{x^2+2x}+\frac{2}{2-x}\left(x\ne0;x\ne\pm2\right)\)

\(A=\frac{2x^2+4x}{x\left(x^2-4\right)}+\frac{\left(x-2\right)\left(x+2\right)}{x\left(x+2\right)}-\frac{2}{x-2}\)

\(A=\frac{2x^2+4x}{x\left(x-2\right)\left(x+2\right)}+\frac{\left(x-2\right)^2\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)

\(A=\frac{2x^2+4x}{x\left(x-2\right)\left(x+2\right)}+\frac{x^3-2x^2-4x+8}{x\left(x-2\right)\left(x+2\right)}-\frac{2x^2+4x}{x\left(x-2\right)\left(x+2\right)}\)

\(A=\frac{2x^2+4x+x^3-2x^2-4x+8-2x^2-4x}{x\left(x-2\right)\left(x+2\right)}\)

\(A=\frac{-2x^2-4x+8}{x\left(x-2\right)\left(x+2\right)}=\frac{-2x\left(x+2\right)+8}{x\left(x-2\right)\left(x+2\right)}=\frac{-2x+8}{x\left(x-2\right)}\)

Vậy \(A=\frac{-2x+8}{x\left(x-2\right)}\left(x\ne0;x\ne\pm2\right)\)

b) \(A=\frac{-2x+8}{x\left(x-2\right)}\left(x\ne0;x\ne\pm2\right)\)

Ta có: x=4 (tmđk) thay vào A ta có:

\(A=\frac{-2\cdot4+8}{4\left(4-2\right)}=\frac{-8+8}{4\cdot2}=\frac{0}{8}=0\)

Vậy A=0 với x=4

1 tháng 5 2020

Giải

A=x+2/x-2+1/x+2+x^2+1

A=x+2/(x-2)(x+2) +x-2/(x-2)(x+2)+x^2+1/(x-2)(x+2)

A=(x+2)+(x-2)+(x+1)/(x-2)(x+2)=x+1

                       

8 tháng 2 2021

\(\dfrac{1}{x^2+2xy+y^2}-\dfrac{1}{x^2-y^2}:\dfrac{4xy}{y^2-x^2}\) \(\left(x,y\ne0;x\ne\pm y\right)\)

\(=\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{y^2-x^2}.\dfrac{y^2-x^2}{4xy}\)

\(=\dfrac{1}{x^2+2xy+y^2}+\dfrac{1}{4xy}\)

\(=\dfrac{6xy+x^2+y^2}{4xy\left(x+y\right)^2}\)

Ta có: \(\dfrac{1}{x^2+2xy+y^2}-\dfrac{1}{x^2-y^2}:\dfrac{4xy}{y^2-x^2}\)

\(=\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x+y\right)\left(x-y\right)}{4xy}\)

\(=\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{4xy}\)

\(=\dfrac{4xy}{4xy\left(x+y\right)^2}+\dfrac{x^2+2xy+y^2}{4xy\left(x+y\right)^2}\)

\(=\dfrac{x^2+6xy+y^2}{4xy\left(x+y\right)^2}\)