K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2021

= 100 - 100x

10 tháng 6 2021

\(\left(x-10\right)^2-x\left(x+80\right)=x^2-20x+100-x^2-80x\)

\(=-100x+100\)

14 tháng 9 2016

cái này là hằng đẳng thức đấy bn ạ

6 tháng 1 2022

jd76jtyjtcyj

23 tháng 3 2020

\(A=\frac{2x^2+4x}{x^3-4x}+\frac{x^2-4}{x^2+2x}+\frac{2}{2-x}\left(x\ne0;x\ne\pm2\right)\)

\(A=\frac{2x^2+4x}{x\left(x^2-4\right)}+\frac{\left(x-2\right)\left(x+2\right)}{x\left(x+2\right)}-\frac{2}{x-2}\)

\(A=\frac{2x^2+4x}{x\left(x-2\right)\left(x+2\right)}+\frac{\left(x-2\right)^2\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)

\(A=\frac{2x^2+4x}{x\left(x-2\right)\left(x+2\right)}+\frac{x^3-2x^2-4x+8}{x\left(x-2\right)\left(x+2\right)}-\frac{2x^2+4x}{x\left(x-2\right)\left(x+2\right)}\)

\(A=\frac{2x^2+4x+x^3-2x^2-4x+8-2x^2-4x}{x\left(x-2\right)\left(x+2\right)}\)

\(A=\frac{-2x^2-4x+8}{x\left(x-2\right)\left(x+2\right)}=\frac{-2x\left(x+2\right)+8}{x\left(x-2\right)\left(x+2\right)}=\frac{-2x+8}{x\left(x-2\right)}\)

Vậy \(A=\frac{-2x+8}{x\left(x-2\right)}\left(x\ne0;x\ne\pm2\right)\)

b) \(A=\frac{-2x+8}{x\left(x-2\right)}\left(x\ne0;x\ne\pm2\right)\)

Ta có: x=4 (tmđk) thay vào A ta có:

\(A=\frac{-2\cdot4+8}{4\left(4-2\right)}=\frac{-8+8}{4\cdot2}=\frac{0}{8}=0\)

Vậy A=0 với x=4

1 tháng 5 2020

Giải

A=x+2/x-2+1/x+2+x^2+1

A=x+2/(x-2)(x+2) +x-2/(x-2)(x+2)+x^2+1/(x-2)(x+2)

A=(x+2)+(x-2)+(x+1)/(x-2)(x+2)=x+1

                       

26 tháng 12 2021

Bạn thay x vào biểu thức rồi tính thôi

a)(x-10)2-x(x+80)

(x2-2x10+100)-x2-80x

=x2-20x+100-x2-80x=-100x+100 
khi x = 0.98 
ta có 
(-100*0.98)+100=-98+100=2
b)x3-9x+27x-27
 hình như là -27x :))

 

20 tháng 10 2021

a) Điều kiện: \(x\ne\left\{0;\pm2\right\}\)

\(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(=[\frac{x^2}{x.\left(x-2\right).\left(x+2\right)}-\frac{6}{3.\left(x-2\right)}+\frac{1}{x+2}]:\frac{x^2-4+10-x^2}{x+2}\)

\(=\frac{x-2.\left(x+2\right)+x-2}{\left(x-2\right).\left(x+2\right)}.\frac{x+2}{6}\)

\(=\frac{6}{\left(x-2\right).\left(x+2\right)}.\frac{x+2}{6}\)

\(=-\frac{1}{x-2}\)

b) \(A\) \(Max\)

\(\Rightarrow-\frac{1}{x-2}Max\)

\(\Rightarrow\frac{1}{x-2}Min\)

\(\Rightarrow\left(x-2\right)\) \(Max\)

\(\Rightarrow x\) \(Max\)

\(\Rightarrow x\in\varnothing\)