tính nhanh : \(\frac{16x99+16}{32+8x6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}=\frac{32}{64}+\frac{16}{64}+\frac{8}{64}+\frac{4}{64}+\frac{2}{32}+\frac{1}{64}\)
\(\frac{32+16+8+4+2}{64}=\frac{62}{64}=\frac{31}{32}\)
Tk mh nhé , mơn nhìu !!!
~ HOK TỐT ~
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)\(+\frac{1}{64}\)
= 32/64 + 16/64 + 8/64 + 4/64 + 2/64 + 1/64
= 63/64
Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)\)
\(A=1-\frac{1}{32}=\frac{31}{32}\)
\(\frac{1}{2}\)+ \(\frac{1}{4}\) + \(\frac{1}{8}\) + \(\frac{1}{16}\) + \(\frac{1}{32}\)
= [ 1 - \(\frac{1}{2}\)] + [ \(\frac{1}{2}\) - \(\frac{1}{4}\)] + [ \(\frac{1}{4}\) - \(\frac{1}{8}\)] + [ \(\frac{1}{8}\) - \(\frac{1}{16}\)] + [ \(\frac{1}{16}\) - \(\frac{1}{32}\)]
Xóa bỏ các phân số trùng lặp , ta được tổng của dãy số là :
1 - \(\frac{1}{32}\) = \(\frac{31}{32}\)
Đ/S :\(\frac{31}{32}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=\frac{64}{128}+\frac{32}{128}+\frac{16}{128}+\frac{8}{128}+\frac{4}{128}+\frac{2}{128}\)
\(=\frac{126}{128}=\frac{63}{64}\)
Đặt A = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
2A = \(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
2A - A = \(1-\frac{1}{64}\)
=> A = \(\frac{63}{64}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)
\(=\frac{1+1+1+1+1+1+1}{2}\)
\(=\frac{7}{2}\)
Đặt \(T=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(T=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+...+\left(\frac{1}{64}-\frac{1}{128}\right)\)
\(\Rightarrow T=1-\frac{1}{128}=\frac{127}{128}\)
= 16x(99+1)/ 8x4+8x6
= 16x100/ 8x10
= 20