K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2021

\(3,=\left(\dfrac{13}{25}-\dfrac{38}{25}\right)+\left(\dfrac{14}{9}-\dfrac{5}{9}\right)=-1+1=0\\ 4,=\left(\dfrac{4}{9}\right)^5\cdot\left(\dfrac{9}{49}\right)^5=\left(\dfrac{4}{9}\cdot\dfrac{9}{49}\right)^5=\left(\dfrac{4}{49}\right)^5\\ 5,\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x-y}{5-3}=\dfrac{x+y}{5+3}=\dfrac{2}{2}=\dfrac{x+y}{8}\Rightarrow x+y=8\\ 6,\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\Rightarrow2\text{ giá trị}\\ 7,=\dfrac{3^{10}\cdot2^{30}}{2^9\cdot3^9\cdot2^{20}}=2\cdot3=6\)

18 tháng 12 2021

Câu 7:

=6

NV
14 tháng 1 2024

\(\dfrac{x}{9}< \dfrac{7}{x}\Rightarrow x^2< 63\)

\(\dfrac{7}{x}< \dfrac{x}{6}\Rightarrow x^2>42\)

\(\Rightarrow42< x^2< 63\)

Giữa 42 và 63 chỉ có 1 số chính phương là 49

\(\Rightarrow x^2=49\Rightarrow x=7\)

11 tháng 3 2022

\(\dfrac{-9}{7}+\dfrac{5}{-7}< x\le\dfrac{-5}{2}+\dfrac{18}{4}\)

\(\dfrac{-9}{7}+\dfrac{-5}{7}< x\le\dfrac{10}{4}+\dfrac{18}{4}\)

\(\dfrac{-14}{7}< x\le2\)

\(-2< x\le2\)

\(\Rightarrow\)\(x=\left\{-1;0;1;2\right\}\)

11 tháng 3 2022

-2<-1,0,1,2<2

27 tháng 12 2020

\(...\Leftrightarrow\dfrac{x+y+1}{6xy}=\dfrac{1}{6}\Leftrightarrow x+y+1=xy\Leftrightarrow\left(x-1\right)\left(y-1\right)=2\Leftrightarrow\left[{}\begin{matrix}x=3;y=2\\x=2;y=3\end{matrix}\right.\)

27 tháng 12 2020

Maths CTV sai r thử lại ko đúng!

28 tháng 2 2022

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2xz+2yz=z^2+\left(x+y\right)^2+2z\left(x+y\right)=36\)

áp dụng BĐT cosi : 

\(z^2+\left(x+y\right)^2\ge2z\left(x+y\right)\)

<=> \(z^2+\left(x+y\right)^2+2z\left(x+y\right)\ge4z\left(x+y\right)=36< =>z\left(x+y\right)\ge9\)

ta lại có \(\dfrac{x+y}{xyz}=\dfrac{x}{xyz}+\dfrac{y}{xyz}=\dfrac{1}{yz}+\dfrac{1}{xz}\) áp dụng BĐT buhihacopxki dạng phân thức => \(\dfrac{1}{yz}+\dfrac{1}{xz}\ge\dfrac{4}{yz+xz}=\dfrac{4}{z\left(x+y\right)}\ge\dfrac{4}{9}\left(đpcm\right)\)

dấu bằng xảy ra khi \(\left[{}\begin{matrix}yz=xz< =>x=y\\x+y+z=6\\z^2=\left(x+y\right)^2\end{matrix}\right.< =>\left[{}\begin{matrix}x+y+z=6\\z=2x=2y\end{matrix}\right.< =>\left[{}\begin{matrix}x=y=\dfrac{3}{2}\\z=3\end{matrix}\right.\)

28 tháng 2 2022

-Ủa vì sao\(\dfrac{4}{z\left(x+y\right)}\ge\dfrac{4}{9}\)? Đáng lẽ là \(\dfrac{4}{z\left(x+y\right)}\le\dfrac{4}{9}\) chứ?

13 tháng 3 2021

\(\dfrac{x}{7}+\dfrac{y}{41}+\dfrac{z}{49}=\dfrac{1000}{2009}\)

\(\Leftrightarrow\dfrac{287x+49y+41z}{2009}=\dfrac{1000}{2009}\)

\(\Leftrightarrow287x+49y+41z=1000\)

\(\Leftrightarrow41z=1000-287x-49y\le1000-287-49=664\) do \(x,y\) nguyên dương. (1)

Mặt khác ta cũng có \(1000\equiv6\left(mod7\right);287\equiv0\left(mod7\right);49\equiv0\left(mod7\right)\)

\(\Rightarrow1000-287x-49y\equiv6\left(mod7\right)\)

Mà \(41\equiv6\left(mod7\right)\Rightarrow z\equiv1\left(mod7\right)\) (2)

Từ (1) suy ra \(1\le z\le\dfrac{664}{41}\le16\) (3)

Từ (2),(3) suy ra \(z\in\left\{8;15\right\}\)

+) \(z=8\Leftrightarrow287x+49y=672\)

\(\Leftrightarrow41x+7y=96\)

Bằng phép thử ta nhận nghiệm \(\left(x;y\right)=\left(2;2\right)\)

+) \(z=15\Leftrightarrow287x+49y=385\)

\(\Leftrightarrow41x+7y=55\)

Bằng phép thử ta nhận nghiệm \(\left(x;y\right)=\left(1;2\right)\)

Vậy tập nghiệm nguyên dương của phương trình là \(\left(x;y;z\right)\in\left\{\left(2;2;8\right);\left(1;2;15\right)\right\}\)

 

18 tháng 2 2022

vỗ tay vì chữ đợp quớ:>