K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2018

CMTT : Ta được : 

MA + MC < BA + BC 

MB + MC < AB + AC 

=> MA + MB + MC + MC < BA + Bc + AB + AC 

=> MA + MB + 2MC < 2BA + BC + AC 

=>      MA + MB + MC < BA + BC + AC ( ĐPcm ) 

14 tháng 4 2020

Không làm mà đòi có ăn thì  ............................................

14 tháng 4 2020

Nguôi ta de len day de giúp chu ko de cho may Súa nhe con .......

5 tháng 4 2019

A B C M D

a)

Áp dụng bất đẳng thức tam giác,ta có:

\(\hept{\begin{cases}AB< AM+MB\\AC< AM+MC\\BC< BM+BC\end{cases}}\Rightarrow AB+AC+BC< 2\left(AM+MB+MC\right)\)

b)

Gọi giao điểm của BM cắt AC tại D.

Do điểm M nằm trong tam giác ABC nên D thuộc AC.

\(\Rightarrow AC=AD+DC\)

Áp dụng bất đẳng thức tam giác vào tam giác ABD có:

BD<AB+AD => MB+MD<AB+AD(1)

Áp dụng bất đẳng thức tam giác vao tam giác MDC có:

MC<DC+MD(2)

Cộng vế theo vế của (1) với (2) ta có:

\(MB+MD+MC< AB+AD+DC+MD\)

\(\Rightarrow MB+MC< AB+\left(AD+DC\right)\)

\(\Rightarrow MB+MC< AB+AC\left(3\right)\)

chứng minh tương tự ta được:\(\hept{\begin{cases}MA+MC< BC+AB\left(4\right)\\MC+MB< AC+BC\left(5\right)\end{cases}}\)

Từ (3);(4):(5) suy ra \(2\left(AB+BC+CA\right)>2\left(MA+MB+MC\right)\)

QT
Quoc Tran Anh Le
Giáo viên
8 tháng 4 2018

Áp dụng bđt tam giác, ta có:

AB+AI > BI = MB+MI, CI + MI > MC

=> AB + AI + CI + MI > MB + MI + MC

Mà AI + CI = AC

=> AB + AC > MB + MC [1]

Áp dụng bđt tam giác, ta cũng có:

BA + BC > MA + MC [2], CA + CB > MA + MB [3]

Từ [1][2][3] => 2 (AB+AC+CA) > MA + MB + MC

=> MA + MB + MC < AB + AC + BC (đpcm)

8 tháng 4 2018

cái chỗ " áp dụng bdt tgiac, ta cũng có": BA+BC>MA+MC,CA+CB>MA+MB... bạn có thể giải thích chi tiết ra cho mk đc ko? thanks

6 tháng 4 2022

ko nhìn thấy 

6 tháng 4 2022

là sao ?