tìm đa thức bít M+(x^2y-2xy^2+xy+1)=x^y+xy^2-xy-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=x^2+2xy+\left(-3x^3+3x^3\right)+\left(2y^3-y^3\right)=x^2+2xy+y^3\)
\(P=\left(\dfrac{1}{3}x^2y-\dfrac{1}{3}x^2y\right)+\left(xy^2+\dfrac{1}{2}xy^2\right)-\left(xy+5xy\right)=\dfrac{3}{2}xy^2-6xy\)
\(P+R=-xy\cdot(x-y)\\\Leftrightarrow R=-xy(x-y)-P\\\Leftrightarrow R=-x^2y+xy^2-(5x^2y-2xy^2+xy-x+y-2)\\\Leftrightarrow R=-x^2y+xy^2-5x^2y+2xy^2-xy+x-y+2\\\Leftrightarrow R=(-x^2y-5x^2y)+(xy^2+2xy^2)-xy+x-y+2\\\Leftrightarrow R=-6x^2y+3xy^2-xy+x-y+2\)
Ta có:
\(P+R=-xy\cdot\left(x-y\right)\)
\(\Leftrightarrow\left(5x^2y-2xy^2+xy-x+y-2\right)+R=-x^2y+xy^2\)
\(\Leftrightarrow R=-x^2y+xy^2-5x^2y+2xy^2+xy+x-y+2\)
\(\Leftrightarrow R=\left(-x^2y-5x^2y\right)+\left(xy^2+2xy^2\right)+xy+x-y+2\)
\(\Leftrightarrow R=-6x^2y+3xy^2+xy+x-y+2\)
\(P=\dfrac{1}{3}x^2y+xy^2-xy+\dfrac{1}{2}xy^2-5xy-\dfrac{1}{3}x^2y=\dfrac{3}{2}xy^2-6xy\)
Thay x = 2 ; y = 1 ta được
\(\dfrac{3}{2}.2.1-6.2.1=3-12=-9\)
a) Ta có: \(M=x^2y+xy^2-5x^2y^2+x^3-2x^2y+6xy^2\)
\(=\left(x^2y-2x^2y\right)+\left(xy^2+6xy^2\right)-5x^2y^2+x^3\)
\(=x^3-x^2y+7xy^2-5x^2y^2\)
Bậc là 4
Ta có: \(N=3x^3+xy+y^2-x^2y^2-2-2xy+7y^2\)
\(=3x^3+\left(xy-2xy\right)+\left(y^2+7y^2\right)-x^2y^2-2\)
\(=3x^2+8y^2-xy-x^2y^2-2\)
Bậc là 4
a.M=3xy2-2xy-2
b.Thay x=1,y=2 vào đa thức M ta được:
M=3.1.22-2.1.2-2=12-4-2=6
`A=1/3x^2y+xy^2-xy+1/2xy^2-5xy-1/3x^2y`
`=(1/3x^2y-1/3x^2y)+(xy^2+1/2xy^2)-xy-5xy`
`=3/2xy^2-6xy`
M=x^3+x^2.y-2x^2-xy-y^2+3y+x-1
=> M=x^2(x+y-2)-(xy+y^2-2y)+(y+x-1) = 0- y(x+y-2)+1=1
N=x^3-2x^2-xy^2+2xy+2y+2x-2
=> N= 2(x+y-1)+x(x^2-y^2)-2x(x-y)=2+x(x+y)(x-y)-2x(x-y)=2+(x^2+xy-2x)(x-y)=2+x(x+y-2)(x-y)=2+0=2(vì x+y-2=0)
M=(x^3+x^2y-2x^2)-(xy+y^2-2y)+(x+y-2)+1
=x^2(x+y-2)-y(x+y-2)+(x+y-2)+1
=x^2.0-y.0+0+1=1
N=x^3-2x^2-xy^2+2xy+2y+2x-2+x^2y-x^2y+2-2
=(x^3+x^2y-2x^2)-(x^2y+xy^2-2xy)+(2x+2y-4)+2
=x^2(x+y-2)-xy(x+y-2)+2(x+y-2)+2
=x^2.0-xy.0+2.0+2=2
\(\Leftrightarrow P=\left(\frac{1}{3}x^2y-\frac{1}{3}x^2y\right)+\left(xy^2+\frac{1}{2}xy^2\right)-\left(xy+5xy\right)\)
\(\Leftrightarrow P=\frac{3}{2}xy^2-6xy\)
Thay \(x=0,5;y=1\)vaof P; dc:
\(P=\frac{3}{2}\cdot0,5-6.0,5=\frac{1}{2}\left(\frac{3}{2}-\frac{12}{2}\right)=\frac{1}{2}\cdot\frac{-9}{2}=-\frac{9}{4}\)