K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2018

\(x=\frac{21-5y}{4}=\frac{20-4y+1-y}{4}=5-y+\frac{1-y}{4}\)

=> Để x nguyên thì 1-y = 4k (k thuộc Z)  => y=1-4k

x=5-1+4k+k = 5k+4

Vậy các cặp (x,y) thuộc Z thỏa mãn là (5k+4; 1-4k) với k thuộc Z

22 tháng 3 2018

mk nháp được 2 kết quả x=4+5k y=1-4k

                                     x=4-5k y=4k+1

Ta có : 4x + 5y = 21

<=> 4x = 21 - 5y 

<=> x = \(\frac{21-5y}{4}\)

Để x nguyên thì : \(\frac{21-5y}{4}\) nguyên 

<=> 21 - 5y thuộc B(4) = {0;4;8;12;......}

<=> 5y thuộc {21;18;14;10;......}

<=> y = 5 

Vậy y = 5 => 4x = 21 - 5.5 = -4 => x = -1

9 tháng 12 2017

mik lp6

nên k bít

xin lỗi ha

6 tháng 2 2018

\(PT\Leftrightarrow\left(x^2-4xy+4y^2\right)+4x-8y+4+y^2-16=0\)

\(\Leftrightarrow\left(x-2y\right)^2+4\left(x-2y\right)+4+y^2=16\)

\(\Leftrightarrow\left(x-2y+2\right)^2+y^2=16\)

Vì \(\left(x+2y+2\right)^2+y^2\) là tổng hai số chính phương 

nên \(\left(\left(x+2y+2\right)^2;y^2\right)\in\left\{0;16\right\}\)xét 2 TH là ra

Bài 1: 

3x+2y=7

\(\Leftrightarrow3x=7-2y\)

\(\Leftrightarrow x=\dfrac{7-2y}{3}\)

Vậy: \(\left\{{}\begin{matrix}y\in R\\x=\dfrac{7-2y}{3}\end{matrix}\right.\)

9 tháng 3 2018

Tìm nghiệm nguyên của các phương trình sau:

a) 12x - 7y = 45 (1)

ta thấy 45 và 12 chia hết cho 3 nên y cũng phải chia hết cho 3

đặt y=3k, ta có:

12x-7.3k=45

<=> 4x-7k=15 (chia cả 2 vế cho 3)

<=> x= \(\frac{15+7k}{4}\)

<=> x= \(2k+4-\frac{k+1}{4}\)

đặt t=\(\frac{k+1}{4}\)(t \(\in\) Z) => k = 4t – 1

Do đó

x = 2(4t – 1) + 4 – t = 7t + 2

y = 3k = 3(4t - 1) = 12t – 3

Vậy nghiệm nguyên của phương trình được biểu thị bởi công thức:

\(\hept{\begin{cases}x=7t+2\\y=12t-3\end{cases}}\)

Câu b và c bạn làm tương tự

Thấy đúng thì k cho mình nhé

4 tháng 10 2021

\(1,3x+2y=7\\ \Leftrightarrow2y=7-3x\left(1\right)\)

Vì \(2y⋮2\)

\(\Leftrightarrow3x-7⋮2\\ \Leftrightarrow3x-9⋮2\\ \Leftrightarrow3\left(x-3\right)⋮2\\ \Leftrightarrow x-3⋮2\\ \Leftrightarrow x.lẻ\)

Đặt \(x=2k+1\left(k\in Z\right)\)

Thay vào (1), ta được :

\(\left(1\right)\Leftrightarrow2y=3\left(2k+1\right)-7\\ \Leftrightarrow2y=6k+3-7\\ \Leftrightarrow2y=6k-4\\ \Leftrightarrow y=3k-2\)

Vậy \(x=2k+1;y=3k-2\left(k\in Z\right)\)

\(2,C_1:\left\{{}\begin{matrix}-2x+y=1\\4x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+2y=2\\4x+5y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}4x+5y=2\\7y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{7}\\y=\dfrac{5}{7}\end{matrix}\right.\\ C_2:\left\{{}\begin{matrix}-2x+y=1\\4x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1+2x\\4x+5y=3\end{matrix}\right.\Leftrightarrow4x+5+10x=3\\ \Leftrightarrow x=-\dfrac{1}{7}\Leftrightarrow y=1-\dfrac{2}{7}=\dfrac{5}{7}\)

6 tháng 9 2019

a) 3x – y = 2 (1)

⇔ y = 3x – 2.

Vậy phương trình có nghiệm tổng quát là (x; 3x – 2) (x ∈ R).

Đường thẳng biểu diễn tập nghiệm của phương trình (1) là đường thẳng y = 3x – 2 (Hình vẽ).

   + Tại x = 2/3 thì y = 0 ⇒ đường thẳng y = 3x – 2 đi qua điểm (2/3 ; 0).

   + Tại x = 0 thì y = -2 ⇒ đường thẳng y = 3x – 2 đi qua điểm (0; -2).

Vậy đường thẳng y = 3x – 2 là đường thẳng đi qua điểm (2/3 ; 0) và (0; -2).

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) x + 5y = 3 (2)

⇔ x = 3 – 5y

Vậy phương trình có nghiệm tổng quát là (3 – 5y; y) (y ∈ R).

Đường thẳng biểu diễn tập nghiệm của (2) là đường thẳng x + 5y = 3.

   + Tại y = 0 thì x = 3 ⇒ Đường thẳng đi qua điểm (3; 0).

   + Tại x = 0 thì y=3/5 ⇒ Đường thẳng đi qua điểm (0; 3/5).

Vậy đường thẳng x + 5y = 3 là đường thẳng đi qua hai điểm (3; 0) và (0; 3/5).

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

c) 4x – 3y = -1

⇔ 3y = 4x + 1

⇔ Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có nghiệm tổng quát là  (x;4/3x+1/3)(x ∈ R).

Đường thẳng biểu diễn tập nghiệm phương trình là đường thẳng 4x – 3y = -1.

   + Tại x = 0 thì y = 1/3

Đường thẳng đi qua điểm (0;1/3) .

   + Tại y = 0 thì x = -1/4

Đường thẳng đi qua điểm (-1/4;0) .

Vậy đường thẳng 4x – 3y = -1 đi qua (0;1/3) và  (-1/4;0).

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

d) x + 5y = 0

⇔ x = -5y.

Vậy nghiệm tổng quát của phương trình là (-5y; y) (y ∈ R).

Đường thẳng biểu diễn nghiệm của phương trình là đường thẳng x + 5y = 0.

   + Tại x = 0 thì y = 0 ⇒ Đường thẳng đi qua gốc tọa độ.

   + Tại x = 5 thì y = -1 ⇒ Đường thẳng đi qua điểm (5; -1).

Vậy đường thẳng x + 5y = 0 đi qua gốc tọa độ và điểm (5; -1).

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

e) 4x + 0y = -2

⇔ 4x = -2 ⇔ Giải bài tập Toán lớp 9 | Giải Toán lớp 9

Phương trình có nghiệm tổng quát (-0,5; y)(y ∈ R).

Đường thẳng biểu diễn tập nghiệm là đường thẳng x = -0,5 đi qua điểm (-0,5; 0) và song song với trục tung.

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

f) 0x + 2y = 5

Giải bài tập Toán lớp 9 | Giải Toán lớp 9

Phương trình có nghiệm tổng quát (x; 2,5) (x ∈ R).

Đường thẳng biểu diễn tập nghiệm là đường thẳng y = 2,5 đi qua điểm (0; 2,5) và song song với trục hoành.

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9