Thu gọn biểu thức sau :
A=1/2.3+1/3.4+....+1/99.100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{99}{100}\)
1/2.3 + 1/3.4 + ....+ 1/ 99.100
= 1/2.(2+1) + 1/3.(3+1) + ... + 1/99.(99+1)
= 1/2 - 1/2+1 + 1/3 - 1/3+1 +....+ 1/99 - 1/99+1
= 1/2 - 1/99
= 49/100
Đặt A = 1.2 + 2.3 + 3.4 + ...... + 99.100
3A= 3.(1.2 + 2.3 + 3.4 + ..... +99.100)
3A=1.2.(3-0) + 2.3.(4-1) +.....+99.100.(101-98)
3A=1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .....+99.100.101
3A=99.100.101
A=99.100.101/3=333300
A = (13x+5a)+(21b-3b) = 18a+18b = 18.(a+b) = 18.100 = 1800
B = (1+100).100 : 2 = 5050
Tk mk nha
A=13a+21b+5a-3b
A=(13a+5a)+(21b-3b)
A=18a+18b
A=18.(a+b)
tha a+b+100ta được:
A=18.100
A=1800
B=1+2+3+...+99+100
số số hạng của tổng Blà(100-1):1+1=100
vậy B=(100+1).100:2=5050
C=1.2+2.3+3.4+...+99.100
3C=1.2.3+2.3.3+3.4.3+...+99.100.3
3C=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3C=(1.2.3+2.3.4+3.4.5+...+99.100.101)-(0.1.2+1.2.3+2.3.4+...+98.99.100)
3C=99.100.101-0.1.2
3C=999900-0
3C=999900
C=999900:3
C=333300
\(A-1=\frac{1}{1.2}+\frac{1}{2.3}..+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}\)\(=\frac{99}{100}\)
\(A=1+\frac{99}{100}=\frac{199}{100}\)
\(1+\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=2-\frac{1}{100}\)
\(=\frac{199}{100}\)
Gọi biểu thức là A
A=1+1/2+1/2.3+1/3.4+...+1/98.99+1/99.100
A-1=1/2+1/2.3+1/3.4+...+1/98.99+1/99.100
A-1=1-1/2+1/2-1/3+1/3-1/4+...+/198-1/99+1/99-1/100
A-1=1-1/100
A-1=99/100
A=99/100+1
A=199/100
\(A=1+\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}+\frac{1}{100}\)
\(\Rightarrow A=1+\frac{1}{2}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{100}\)
\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{2}-\frac{1}{100}+\frac{1}{100}\)
\(\Rightarrow A=1+1\)
\(\Rightarrow A=2\)
Vậy A = 2
\(A=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=9\left(1-\dfrac{1}{100}\right)=\dfrac{891}{100}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{100}\)
\(\Rightarrow A=\frac{49}{100}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)