Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{99}{100}\)
A = (13x+5a)+(21b-3b) = 18a+18b = 18.(a+b) = 18.100 = 1800
B = (1+100).100 : 2 = 5050
Tk mk nha
A=13a+21b+5a-3b
A=(13a+5a)+(21b-3b)
A=18a+18b
A=18.(a+b)
tha a+b+100ta được:
A=18.100
A=1800
B=1+2+3+...+99+100
số số hạng của tổng Blà(100-1):1+1=100
vậy B=(100+1).100:2=5050
C=1.2+2.3+3.4+...+99.100
3C=1.2.3+2.3.3+3.4.3+...+99.100.3
3C=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3C=(1.2.3+2.3.4+3.4.5+...+99.100.101)-(0.1.2+1.2.3+2.3.4+...+98.99.100)
3C=99.100.101-0.1.2
3C=999900-0
3C=999900
C=999900:3
C=333300
Đặt A = 1.2 + 2.3 + 3.4 + ...... + 99.100
3A= 3.(1.2 + 2.3 + 3.4 + ..... +99.100)
3A=1.2.(3-0) + 2.3.(4-1) +.....+99.100.(101-98)
3A=1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .....+99.100.101
3A=99.100.101
A=99.100.101/3=333300
1/2.3 + 1/3.4 + ....+ 1/ 99.100
= 1/2.(2+1) + 1/3.(3+1) + ... + 1/99.(99+1)
= 1/2 - 1/2+1 + 1/3 - 1/3+1 +....+ 1/99 - 1/99+1
= 1/2 - 1/99
= 49/100
\(=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\right)\)
\(=1-\left(1-\frac{1}{100}\right)=1-\frac{99}{100}=\frac{1}{100}\)
Đặt \(A=1-\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A=1-\frac{1}{100}=\frac{99}{100}\)
= 1 -1/2 + 1/2 - 1/3 +......+1/99 - 1/100
= 1 -1/100
= 99/100
***Ai k mk mk k lại !!***
1/1*2+1/2*3+1/3*4+...+1/99*100
=(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+...+(1/99-1/100)
=1-1/100
=99/100
a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
b) \(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=2.\left(1-\frac{1}{99}\right)\)
\(=2.\frac{98}{99}\)
\(=\frac{196}{99}=1\frac{97}{99}\)
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
= 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 - ... - 98.99.100 + 99.100.101
= 99.100.101
A=333300
B= (1.2 + 2.3 + 3.4 + ... + 100.101) - (1 + 2 + 3+ 4 + ... + 100)
= 333300 + 10100 - 5050
= 333300 + 5050
= 338350
A = 1*2 + 2*3 + 3*4 + ........+ 99*100
=>3A=1.2.3+2.3.3+3.4.3+...+99.100.3
<=> 3A =1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
<=> 3A =1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
<=> 3A = 99.100.101 = 999900
=> S = 333300
\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{100}\)
\(\Rightarrow A=\frac{49}{100}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)