cho tamgiác abc có ab = 6 cm ,ac=9cm ,kẻ phân giác ae.từ b và c kẻ các đường vuông góc bm và cn tương ứng xuống tia ae
a) cm abm đồng dạng với can
b) tính tỉ số bm/cn
c) cm am.en=an.em
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(\frac{5x-2}{12}-\frac{2x^2+1}{8}=\frac{x-3}{6}+\frac{1-x^2}{4}\) (BCNN (12, 8 , 6 , 4) = 24)
\(\Leftrightarrow\frac{2\left(5x-2\right)}{24}-\frac{3\left(2x^2+1\right)}{24}=\frac{4\left(x-3\right)}{24}+\frac{6\left(1-x^2\right)}{24}\)
\(\Leftrightarrow\frac{\left(2.5x\right)-\left(2.2\right)}{24}-\frac{\left(3.2x^2\right)+\left(3.1\right)}{24}=\frac{\left(4.x\right)-\left(4.3\right)}{24}+\frac{\left(6.1\right)-\left(6.x^2\right)}{24}\)
\(=\frac{10x-4}{24}-\frac{6x^2+3}{24}=\frac{4x-12}{24}+\frac{6-6x^2}{24}\)
\(\Leftrightarrow\frac{\left(10x-4\right)-\left(6x^2+3\right)}{24}=\frac{\left(4x-12\right)+\left(6-6x^2\right)}{24}\)
\(\Rightarrow\left(10x-4\right)=\left(4x-12\right)\)
\(\Rightarrow\left(6x^2+3\right)=\left(6-6x^2\right)\)
Do \(VT=VP\)nên suy ra: \(\left(10x-4\right)=\left(4x-12\right)=\left(6x^2+3\right)=\left(6-6x^2\right)\) (Vô lí)
Do đó phương trình không có nghiệm nào thỏa mãn (PT vô nghiệm)
a: Xét ΔABD và ΔECD có
DA=DE
\(\widehat{ADB}=\widehat{EDC}\)
DB=DC
Do đó: ΔABD=ΔECD
a: Xét ΔABD và ΔECD có
DA=DE
\(\widehat{ADB}=\widehat{EDC}\)
DB=DC
Do đó: ΔABD=ΔECD
a: Xét ΔABD và ΔECD có
DA=DE
\(\widehat{ADB}=\widehat{EDC}\)
DB=DC
Do đó: ΔABD=ΔECD
a: Xét ΔABM vuông tại M và ΔACN vuông tại N có
AB=AC
\(\widehat{BAM}\) chung
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
b: Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
a) Xét tam giác BNC vuông tại N và tam giác CMB vuông tại M:
BC chung.
\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A).
=> Tam giác BNC = Tam giác CMB (cạnh huyền - góc nhọn).
=> BN = CM (2 cạnh tương ứng).
Ta có: AB = AN + BN; AC = AM + CM.
Mà AB = AC (Tam giác ABC cân tại A); BN = CM (cmt).
=> AM = AN.
b) Xét tam giác AMN: AM = AN (cmt).
=> Tam giác AMN cân tại A.
c) Xét tam giác ABC:
BM; CN là đường cao (BM vuông góc với AC; CN vuông góc với AB).
I là giao điểm của BM và CN (gt).
=> I là trực tâm.
=> AI là đường cao.
Mà AI là đường cao xuất phát từ đỉnh A của tam giác ABC cân tại A.
=> AI là đường phân giác góc A (Tính chất các đường trong tam giác cân).
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AHchung
Do đo: ΔAHB=ΔAHC
b: HB=HC=BC/2=3cm
=>AH=4cm
c: Xét ΔABM và ΔACN có
góc ABM=góc ACN
AB=AC
góc BAM chung
Do đó: ΔABM=ΔACN
Suy ra BM=CN
Xét ΔNBC và ΔMCB có
NB=MC
NC=MB
BC chung
Do đo: ΔNBC=ΔMCB
Suy ra: góc KBC=góc KCB
=>ΔKBC cân tại K
=>KB=KC
=>KN=KM
hay ΔKNM cân tại K
d: Xét ΔABC có AN/AB=AM/AC
nên NM//BC
a: Xét ΔABM vuông tại M và ΔACN vuông tại N có
\(\widehat{BAM}\) chung
Do đó: ΔABM\(\sim\)ΔACN
b: Xét ΔHNB vuông tại N và ΔHMC vuông tại M có
\(\widehat{NHB}=\widehat{MHC}\)
Do đó: ΔHNB\(\sim\)ΔHMC
Suy ra: HN/HM=HB/HC
hay \(HN\cdot HC=HB\cdot HM\)
a, Xét ΔABM và ΔACN có
\(\widehat{N}=\widehat{M}=90^0\)
\(\widehat{A}:chung\)
\(\Rightarrow\Delta ABM\sim\Delta ACN\left(g-g\right)\)
b, Xét ΔNHB và ΔMHC có :
\(\widehat{N}=\widehat{M}=90^0\)
\(\widehat{NHB}=\widehat{MHC}\left(đối\cdotđỉnh\right)\)
\(\Rightarrow\Delta NHB\sim\Delta MHC\left(g-g\right)\)
\(\Rightarrow\dfrac{HB}{HC}=\dfrac{HN}{HM}\)
\(\Rightarrow HB.HM=HC.HN\left(đpcm\right)\)
a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
góc A chung
=>ΔAMB=ΔANC
b: AN=căn 10^2-8^2=6cm=AM
c: Xét ΔNAH vuông tại N và ΔMAH vuông tại M có
AH chung
AN=AM
=>ΔNAH=ΔMAH
=>góc NAH=góc MAH
=>H nằm trên tia phân giác của góc BAC
Bạn có thể giải chi tiết ra hộ mình được ko nếu được thì cả ơn nhiều