SO SÁNH A VÀ B
A =31/2*32/2*33/2*.....*60/2
B=1*3*5**7*......*59
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{31}{2}.\frac{32}{2}.....\frac{60}{2}\)
\(B=\left(31.32.33....60\right).\frac{1.2.3....60}{2^{30.\left(1.2.3...30\right)}}\)
\(B=\left(1.3.5.....59\right).\frac{2.4.6.....60}{2.4.6....60}=1.3.5...59\)
=> \(B=A\)
Ta có:
31/2.32/2.33/2....60/2=31.32......60/2^30
=(31.32.33....60)(1.2.3....30)/2^30(1.2.3...30)
=(1.3.5...59)(2.4.6...60)/(2.4.6...60)=1.3.5...59
=>P=Q
nhớ ****
cái dòng 3, 4 mk ko hiểu sao 2^30.(1.2.3....30) lại bằng 2.4.6...60
B = 1/1.2 + 1/3.4 + 1/5.6 + ... + 1/59.60
B = 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/59 - 1/60
B = (1 + 1/3 + 1/5 + ... + 1/59) - (1/2 + 1/4 + 1/6 + ... + 1/60)
B = (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... + 1/59 + 1/60) - 2.(1/2 + 1/4 + 1/6 + ... + 1/60)
B = (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... + 1/59 + 1/60) - (1 + 1/2 + 1/3 + ... + 1/30)
B = 1/31 + 1/32 + 1/33 + ... + 1/60 = A
=> B = A
ta có: Lớn nhất của A là:\(\frac{1}{31}+\frac{1}{31}+...+\frac{1}{31}\)(30 phân số)
=30/31
B=1-\(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{3}+...+\frac{1}{59}-\frac{1}{60}\)\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{59}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{60}\right)\)
Bé nhất của của B là :\(\left(1+1+...+1\right)-\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)\)
\(=30-\frac{30}{60}\)
=>B>A