K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2018

do a,b,c là độ dài các cạnh của 1 tam giác=>a+b+c>0.Ap dung BĐT cosi 1/a+1/b+1/c>=9/a+b+c                                                                     =>(a+b+c).(1/a+1/b+1/c)>=9/(a+b+c).(a+b+c)=9

20 tháng 3 2018

mk lm cách khác nhé:

 \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

CM  BĐT  phụ:   với   \(x>0\) thì:

               \(x+\frac{1}{x}\ge2\)  (*)

\(\Leftrightarrow\)\(x^2+1\ge2x\)\(\Leftrightarrow\)\(x^2-2x+1\ge0\)\(\Leftrightarrow\)\(\left(x-1\right)^2\ge0\)  luôn đúng

Dấu "="  xảy ra  \(\Leftrightarrow\)\(x=1\)

Áp dụng BĐT (*)  ta có:

\(\frac{a}{b}+\frac{b}{a}\ge2;\)  \(\frac{a}{c}+\frac{c}{a}\ge2;\) \(\frac{b}{c}+\frac{c}{b}\ge2\)

suy ra:   \(3+\frac{a}{b}+\frac{b}{a}+\frac{a}{c}+\frac{c}{a}+\frac{b}{c}+\frac{c}{b}\ge3+2+2+2=9\)

\(\Rightarrow\)\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Dấu "=" xảy ra  \(\Leftrightarrow\) \(a=b=c\)

30 tháng 3 2018

Ta có : \(\frac{1}{x}\)\(\frac{1}{y}\)\(\ge\)\(\frac{4}{xy}\)( với x,y dương)

Thật vậy: \(\frac{1}{x}\)+\(\frac{1}{y}\)\(\ge\frac{4}{x+y}\)

\(\Leftrightarrow\frac{y+x}{xy}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) luôn đúng \(\forall\)x,y

Áp dụng bất đẳng thức trên ta được:

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)(Vì a,b,c là 3 cạnh \(\Delta\)nên a+b-c > 0 và b+c-a > 0                                                                                                                                                                                                               bđt \(\Delta\))

Tương tự có: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{2}{a}\)

                       \(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)

Cộng từng vế 3 bđt trên ta được:

2(\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\)\(\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(ĐFCM)

CHÚC BẠN HỌC TỐT!

30 tháng 3 2018

Cái phần cuối mình up lên nhưng không được chắc là do giới hạn chữ

Phần cuối bạn làm như thế này nhé:

C/m tương tự:\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{2}{a}\)

                         \(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)

Cộng từng vế của 3 bđt trên ta được \(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

                                                        \(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(ĐFCM)

                

CHÚC BẠN HỌC TỐT!

21 tháng 4 2019

Đặt \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

           \(=\left(a+b+c\right).\frac{1}{a}+\left(a+b+c\right).\frac{1}{b}+\left(a+b+c\right).\frac{1}{c}\)

           \(=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

            \(=\frac{a}{a}+\frac{b+c}{a}+\frac{b}{b}+\frac{a+c}{b}+\frac{c}{c}+\frac{a+b}{c}\)

           \(=1+\frac{b+c}{a}+1+\frac{a+c}{b}+1+\frac{a+b}{c}\)

         \(=3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)

Ta có: trong 1 tam giác thì tổng độ dài 2 cạnh bao giờ cũng lớn hơn cạnh còn lại ( bất đẳng thức tam giác )

\(\Rightarrow\hept{\begin{cases}b+c>a\\a+c>b\\a+b>c\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{b+c}{a}>1\\\frac{a+c}{b}>1\\\frac{a+b}{c}>1\end{cases}}\)

\(\Rightarrow A>3+1+1+1\)

\(\Rightarrow A>6\left(đpcm\right)\)

21 tháng 3 2017

Xin lỗi nhé, nãy đang vội thấy 3 p/s nghĩ luôn ra mà ko kịp soát

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có: 

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{4}{b+c-a+a+c-b}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{a+b-c+a+c-b}=\frac{4}{2a}=\frac{2}{a}\)

Cộng theo vế 3 BĐT ta có: 

\(2VT\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2VP\Rightarrow VT\ge VP\)

Đẳng thức xảy ra khi \(a=b=c\)

21 tháng 3 2017

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ta có: 

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{a+c-b}\)

\(\ge\frac{9}{a+b-c+b+c-a+a+c-b}=\frac{9}{a+b+c}\left(1\right)\)

Lại có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(2\right)\)

Từ (1) và (2) ta  có ĐPCM

12 tháng 2 2018

A E B D C x b c c A

Từ B kẻ đường thẳng song song với đường phân giác AD, cắt CA ở E. Tam giác ABE cân ở A nên AE = AB = c

\(\Rightarrow\)CE = CA + AE = b + c 

Do đó AD // BE nên ta có :

\(\frac{AD}{BE}=\frac{CA}{CE}\)hay \(\frac{x}{BE}=\frac{b}{b+c}\), do đó \(x=\frac{b}{b+c}.BE\)

Mà BE < AB + AC < 2c

\(\Rightarrow\) \(x< \frac{2bc}{b+c}\)hay \(\frac{1}{x}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\)( 1 )

Tương tự ta có : \(\frac{1}{y}>\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)( 2 )

ta cũng có : \(\frac{1}{z}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)( 3 )

Cộng từng vế của ( 1 ) ; ( 2 ) ; ( 3 ) ta có :

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Vậy \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(ĐPCM\right)\)

Hình mình vẽ hơi xấu tí thông cảm

26 tháng 4 2017

C đã làm được chưa giải giúp mình vs