cho tam giac ABC(A<B). E là hình chiếu của C trên AB,K là hình chiếu của C trên AD,H là hình chiếu của B trên AC.cmr
a) AB.AE=AC.AH
b)BC.AK=AC.HC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta HAB\)và \(\Delta HCA\)có:
\(\widehat{AHB}=\widehat{CHA}=90^o\)
\(\widehat{HAB}=\widehat{HCA}\)(cùng phụ với \(\widehat{HAC}\))
Suy ra \(\Delta HAB\)đồng dạng với \(\Delta HCA\)(g.g)
a. Xét ΔAMC và ΔBMD, ta có:
BM = MC (gt)
\(\widehat{AMB}=\widehat{BMC}\) (2 góc đối đỉnh)
AM = MD (gt)
Suy ra: ΔAMC = ΔDMB (c.g.c)
⇒ \(\widehat{MAC}=\widehat{D}\) (2 góc tương ứng)
Suy ra: AC // BD
(vì có 2 góc ở vị trí so le trong bằng nhau)
Mà AB ⊥ AC (gt) nên AB ⊥ BD.
\(\Rightarrow\widehat{ABD}\) = 90 độ
Vì ΔAMC = ΔDMB (câu a)
=> AC = BD
Xét ΔABC và ΔBAD có :
\(\widehat{BAC}=\widehat{ABD}=90^o\left(gt\right)\)
AB là cạnh chung
AC = BD (cmt)
=> ΔABC = ΔBAD (c.g.c)
a: Xét ΔABD vuông tại D vàΔACE vuông tại E có
góc A chung
Do đó: ΔABD đồng dạng với ΔACE
b: Xét tứ giác BEDC có góc BEC=góc BDC=90 độ
nên BEDC là tứ giác nội tiếp
=>góc BED+góc BCD=180 độ