Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
a/ Xét hai tam giác vuông ABD và ACE có:
AB = AC (tam giác ABC cân tại A)
A: góc chung
=> tam giác ABD = tam giác ACE.
b/ Ta có: BD và CE là đường cao của tam giác ABC
Mà BD cắt CE tại H
=> H là trực tâm của tam giác ABC
=> AH là đường cao còn lại của tam giác ABC
Vì tam giác ABC cân
Nên AH cũng là đường trung trực của BC.
c/ Ta có: tam giác ABD = tam giác ACE (Cmt)
=> AD = AE (hai cạnh t/ư)
=> tam giác ADE cân tại A
=> góc ADE = góc AED.
Ta có: \(\widehat{ADE}+\widehat{AED}+\widehat{A}=180^0\)
hay \(2.\widehat{ADE}=180^0-\widehat{A}\) (Vì \(\widehat{ADE}=\widehat{AED}\) )
=> \(\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\)
Ta có: tam giác ABC cân tại A
=> góc B = góc C.
Ta có: \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)
hay \(2.\widehat{ACB}=180^0-\widehat{A}\) (Vì \(\widehat{ABC}=\widehat{ACB}\))
=> \(\widehat{ACB}=\dfrac{180^0-\widehat{A}}{2}\)
Ta có: \(\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\)
và \(\widehat{ACB}=\dfrac{180^0-\widehat{A}}{2}\)
=> \(\widehat{ADE}=\widehat{ACB}\)
Mà hai góc này ở vị trí slt
=> DE // BC (đpcm).
a, Ta có :tam giác ABD và tam giác ACE có
$\widehat{AEC}=\widehat{ADB}=90$
Góc A chung
=> $\bigtriangleup ABD\sim \bigtriangleup ACE$
b, Tương tự câu a ta CM được $\Delta HEB\sim \Delta HDC (g.g)$
=>$\frac{HE}{HD}= \frac{HB}{HC}\rightarrow HD.HB=HE.HC$
a. \(\overrightarrow{AB}=\left(4;-2\right)\) ; \(\overrightarrow{BC}=\left(-2;-4\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}.\overrightarrow{BC}=4.\left(-2\right)+\left(-2\right).\left(-4\right)=0\\AB=\sqrt{4^2+\left(-2\right)^2}=2\sqrt{5}\\BC=\sqrt{\left(-2\right)^2+\left(-4\right)^2}=2\sqrt{5}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}AB\perp BC\\AB=BC\end{matrix}\right.\) \(\Rightarrow\Delta ABC\) vuông cân tại B
\(S_{ABC}=\dfrac{1}{2}AB.BC=10\)
b.
\(\overrightarrow{AC}=\left(2;-6\right)=2\left(1;-3\right)\)
(h) vuông góc AC nên nhận (1;-3) là 1 vtpt
Phương trình: \(1\left(x-2\right)-3\left(y-4\right)=0\Leftrightarrow x-3y+10=0\)
c.
Gọi M là trung điểm BC \(\Rightarrow M\left(5;0\right)\)
Phương trình trung trực BC qua M và vuông góc BC (nên nhận (1;2) là 1 vtpt):
\(1\left(x-5\right)+2y=0\Leftrightarrow x+2y-5=0\)
Tọa độ K là nghiệm: \(\left\{{}\begin{matrix}x+2y-5=0\\x-3y+10=0\end{matrix}\right.\) \(\Rightarrow K\left(-1;3\right)\)
Chứng minh ABHK là hbh, nhưng H là điểm nào vậy bạn?
d.
Gọi \(D\left(0;d\right)\Rightarrow\overrightarrow{CD}=\left(-4;d+2\right)\)
\(\overrightarrow{AC}.\overrightarrow{CD}=0\Leftrightarrow2.\left(-4\right)+\left(-6\right).\left(d+2\right)=0\Rightarrow d=-\dfrac{10}{3}\)
\(\Rightarrow D\left(0;-\dfrac{10}{3}\right)\)
a: Xét ΔBAC có \(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
=>\(\dfrac{a^2+AC^2-7a^2}{2\cdot a\cdot AC}=\dfrac{-1}{2}\)
=>\(2\left(AC^2-6a^2\right)=-2a\cdot AC\)
=>\(AC^2-6a^2=AC\cdot-a\)
=>\(AC^2+AC\cdot a-6a^2=0\)
=>AC^2+3*AC*a-2*AC*a-6a^2=0
=>AC(AC+3a)-2a(AC+3a)=0
=>AC=2a
Xét ΔBAC có \(cosB=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}=\dfrac{a^2+7a^2-4a^2}{2\cdot a\cdot a\sqrt{7}}=\dfrac{2\sqrt{7}}{7}\)
nên góc B=41 độ
=>góc C=180-120-41=60-41=19 độ
b: \(m_A=\sqrt{\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}}=\sqrt{\dfrac{a^2+4a^2}{2}-\dfrac{7a^2}{4}}=\dfrac{\sqrt{3}}{2}\cdot a\)
\(\dfrac{BC}{sinA}=2\cdot R\)
=>\(2\cdot R=\dfrac{a\sqrt{7}}{sin120}=a\sqrt{7}\cdot\dfrac{2}{\sqrt{3}}\)
=>\(R=a\sqrt{\dfrac{7}{3}}\)
Lời giải:Áp dụng định lý cos ta có:
\(\cos A=\frac{AB^2+AC^2-BC^2}{2AB.AC}=\frac{-1}{2}\Rightarrow \widehat{A}=120^0\)
\(\cos B=\frac{BC^2+BA^2-AC^2}{2BC.BA}=\frac{-\sqrt{2}}{2}\Rightarrow \widehat{B}=45^0\)
\(\widehat{C}=180^0-(\widehat{A}+\widehat{B})=180^0-(120^0+45^0)=15^0\)
\(\widehat{ADB}=180^0-(\frac{\widehat{A}}{2}+\widehat{B})=180^0-(\frac{120^0}{2}+45^0)=75^0\)
a ,Vì tam giác ABC cân tại A , AB=AC
Xét TG ABH và TG ACH , ta có :
AC=AB ; góc AHB = góc AHC = 90o ( AH vuông BC )
\(\Rightarrow\) TG ABH = TG ACH ( cạnh huyền - góc nhọn )
\(\Rightarrow\) góc BAH = góc CAH
Xét TG ABG và TG ACG , có :
góc BAH = góc CAH ; AG chung ; AB =AC
\(\Rightarrow\)TG ABG = TG ACG ( c.g.c )
\(\Rightarrow\) GB=GC ; góc ABG = góc ACG
C/m Tg BCD = Tg CBM (g.c.g)\(\Rightarrow\) góc BDC = góc CMB
C/m Tg BDG = Tg CMG ( g.c.g)
phần còn lại (bn) tự làm nốt đi
a: Xét ΔABC có
AD là đường cao
BE là đường cao
AD cắt BE tại I
Do đó: I là trực tâm của ΔABC
Suy ra: CI⊥AB tại K
hay \(\widehat{AKC}=90^0\)
b: Xét tứ giác CDIE có
\(\widehat{CDI}+\widehat{CEI}=180^0\)
Do đó: CDIE là tứ giác nội tiếp
Suy ra: \(\widehat{DIE}+\widehat{ECD}=180^0\)
hay \(\widehat{DIE}=140^0\)
=>\(\widehat{BID}=40^0\)
a: Xét ΔABD vuông tại D vàΔACE vuông tại E có
góc A chung
Do đó: ΔABD đồng dạng với ΔACE
b: Xét tứ giác BEDC có góc BEC=góc BDC=90 độ
nên BEDC là tứ giác nội tiếp
=>góc BED+góc BCD=180 độ