K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2018

kẻ đường kính AA' của đường tròn tâm O

Xét đường tròn tâm O có góc ABC=AA'C ( cùng chắn cung AC) (1)

Có tứ giác BEFC nội tiếp đường tròn đường kính BC 

=> góc ABC=AFE ( cùng bù với góc EFC ) (2)

từ (1) và (2) => góc AFE = AA'C

Gọi giao điểm của OA và EF là H

Xét tam giác AHF và ACA'

có góc A'AC chung

góc AFE=AA'C (cmt)

=> tam giác AHF đồng dạng ACA'

=> góc AHF = ACA'

mà góc ACA' = 90 độ ( góc nt chắn nửa đg tròn )

=> góc AHF = 90 độ

=> OA vuông góc EF

a) Xét (O) có 

ΔDBC nội tiếp đường tròn(D,B,C∈(O))

BC là đường kính(gt)

Do đó: ΔDBC vuông tại D(Định lí)

⇒CD⊥BD tại D

⇒CD⊥AB tại D

⇒HD⊥AD tại D

Xét ΔADH có HD⊥AD tại D(cmt)

nên ΔADH vuông tại D(Định nghĩa tam giác vuông)

Ta có: ΔADH vuông tại D(cmt)

mà DI là đường trung tuyến ứng với cạnh huyền AH(I là trung điểm của AH)

nên \(DI=\dfrac{AH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)

Xét (O) có

ΔBEC nội tiếp đường tròn(B,E,C∈(O))

BC là đường kính(gt)

Do đó: ΔBEC vuông tại E(Định lí)

⇒BE⊥CE tại E

⇒BE⊥AC tại E

⇒HE⊥AE tại E

Xét ΔAEH có AE⊥EH tại E(cmt)

nên ΔAEH vuông tại E(Định nghĩa tam giác vuông)

Ta có: ΔAEH vuông tại E(cmt)

mà EI là đường trung tuyến ứng với cạnh huyền AH(I là trung điểm của AH)

nên \(EI=\dfrac{AH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)

Từ (1) và (2) suy ra ID=IE

hay I nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: OD=OE(=R)

nên O nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(4)

Từ (3) và (4) suy ra OI là đường trung trực của DE

hay OI⊥DE(đpcm)

I là điểm nào ạ?

30 tháng 5 2021

xét ΔMDC và ΔMBD có

∠M chung

∠MBD=∠MDC=\(\dfrac{1}{2}sđ\stackrel\frown{DC}\)

⇒ΔΔMDC ∼ ΔMBD (g.g)

\(\dfrac{MD}{MB}=\dfrac{MC}{MD}\)⇒MD2=MC.MB

5 tháng 3 2022

đề bài : Cho tam giác MAB vuông tại H ( MB<MA), kẻ MH vuông góc với AB( H thuộc AB). Đường tròn tâm O đường kính MH cắt MA và MB lần lượt tại E và F( E,F khác M). a) Chứng minh tứ giác AEFB nội tiếp b) Đường thẳng EF cắt đường tròn tâm (I) ngoại tiếp tam giác MAB tại P và Q(P thuộc cung MB). Chứng minh tam giác MPQ cân c) Gọi D là giao điểm thứ 2 của (O) với (I). Đường thẳng EF cắt đường thẳng AB tại K. Chứng minh ba điểm M,D,K thẳng hàng

đúng hog

5 tháng 3 2022

Vuông tại M nha

12 tháng 10 2017

1.     Vì BD, BF là các tiếp tuyến của (O) nên OD BD, OF BF.

Xét 2 tam giác vuông OBD và OBF có

O B  chung OBD=OBF(gt) = > Δ O B D = Δ O B F (cạnh huyền–góc nhọn)

BD = BF

Mà OD = OF = r nên OB là trung trực của DF OB DF ∆ KIF vuông tại K.

Mà OD = OF = r nên OB là trung trực của DF OB DF ∆ KIF vuông tại K. D O E = 90 o

Theo quan hệ giữa góc nội tiếp và góc ở tâm cho đường tròn (O), ta có:

D F E = 1 2 D O E = 45 o

∆ KIF vuông cân tại K.

=>BIF=45o