K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2018

\(\frac{c}{ab+1}\le\frac{c}{a+b}\)

\(\frac{a}{bc+1}\le\frac{a}{b+c}\)

\(\frac{b}{ac+1}\le\frac{b}{a+c}\)

\(\Rightarrow\)\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\le\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

suy ra.....

16 tháng 3 2018

Truy cập link này nhé:

https://olm.vn/hoi-dap/question/601162.html?auto=1

13 tháng 3 2017

\(a\le1;b\le1\Rightarrow a-1\le0;b-1\le0\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)

\(\Leftrightarrow ab-a-b+1\ge0\)

\(\Leftrightarrow ab+1\ge a+b\)

\(\frac{1}{ab+1}\le\frac{1}{a+b}\)

\(\Rightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)

Chứng minh tương tự ta cũng có :

\(\hept{\begin{cases}\frac{a}{bc+1}\le\frac{2a}{a+b+c}\\\frac{b}{ac+1}\le\frac{2b}{a+b+c}\end{cases}}\)

Cộng vế với vế ta được :

\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2a+2b+2c}{a+b+c}\)

\(\Leftrightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\)  (đpcm)

11 tháng 3 2020

Câu này có rất nhiều trong CHTT, bạn vô tìm nhé!