K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2021

a, \(\left|4x-8\right|\le8\)

\(\Leftrightarrow\left(\left|4x-8\right|\right)^2\le64\)

\(\Leftrightarrow16x^2-64x+64\le64\)

\(\Leftrightarrow16x^2-64x\le0\)

\(\Leftrightarrow16x\left(x-4\right)\le0\)

\(\Leftrightarrow0\le x\le4\)

b, \(\left|x-5\right|\le4\)

\(\Leftrightarrow\left(\left|x-5\right|\right)^2\le16\)

\(\Leftrightarrow x^2-10x+25\le16\)

\(\Leftrightarrow x^2-10x+9\le0\)

\(\Leftrightarrow1\le x\le9\)

\(\Rightarrow x\in\left\{1;2;3;4;5;6;7;8;9\right\}\)

c, \(\left|2x+1\right|< 3x\)

TH1: \(x\ge-\dfrac{1}{2}\)

\(\left|2x+1\right|< 3x\)

\(\Leftrightarrow2x+1< 3x\)

\(\Leftrightarrow x>1\)

\(\Rightarrow\left\{{}\begin{matrix}x\in Z\\x\in\left(1;2018\right)\end{matrix}\right.\)

TH2: \(x< -\dfrac{1}{2}\)

\(\left|2x+1\right|< 3x\)

\(\Leftrightarrow-2x-1< 3x\)

\(\Leftrightarrow x>-\dfrac{1}{5}\left(l\right)\)

Vậy \(\left\{{}\begin{matrix}x\in Z\\x\in\left(1;2018\right)\end{matrix}\right.\)

21 tháng 1 2021

d, \(\left|x+1\right|+\left|x\right|< 3\)

\(\Leftrightarrow x+1+x+2\left|x^2+x\right|< 9\)

\(\Leftrightarrow\left|x^2+x\right|< 4-x\)

Xét hai trường hợp để phá dấu giá trị tuyệt đối

e, Tương tự câu d

5 tháng 3 2022

a, \(\dfrac{4\left(x-3\right)^2-\left(2x-1\right)^2-12x}{12}< 0\)

\(\Rightarrow4\left(x^2-6x+9\right)-4x^2+4x-1-12x< 0\)

\(\Leftrightarrow-32x+35< 0\Leftrightarrow x>\dfrac{35}{32}\)

b, \(\dfrac{24+12\left(x+1\right)-36+3\left(x-1\right)}{12}< 0\)

\(\Rightarrow-12x+15x+9< 0\Leftrightarrow3x< -9\Leftrightarrow x>-3\)

1) 

(=)x2 = 82 + 62 = 64+36=100=102 = (-10)2 

=> x=10 hoặc x=-10

2)

(=)|x-1| = -26/-24=13/12

=> x-1 = 13/12 hoặc x-1=-13/12

=> x= 25/12 hoặc x= -1/12

3) 

(2x-4+7)\(⋮\left(x-2\right)\) 

(=) 2(x-2) + 7 \(⋮\left(x-2\right)\)

(=) 7 \(⋮\left(x-2\right)\)

(=) x-2 \(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

(=) x\(\in\left\{-5;1;3;9\right\}\)

vì x bé nhất => x=-5

#Học-tốt

Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-1\right)^2\ge0\forall y\)

\(2\left(x+y\right)^2\ge0\forall x,y\)

Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi 

\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)

Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được: 

\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)

\(=0^{2016}+1^{2017}+0^{2018}=1\)

Vậy: M=1