(1 x 3 x 5 x...x 99) x (2 x 2 x 2 x ... x 2)
51 x 52 x 53 x...x 100
Biết (2 x 2 x 2 x...x 2) có 52 thừa số
GIÚP MIK VỚI!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.3.5.7........99 = \(\frac{\left(1.3.5.7......99\right)\left(2.4.6......100\right)}{2.4.6......100}\)= \(\frac{1.2.3......99.100}{2^{50}\left(1.2.3.....50\right)}=\frac{51.52.53.......100}{2.2.2......2}=\frac{51}{2}.\frac{52}{2}....\frac{100}{2}\)(ĐPCM)
50 số 2
a: \(\Leftrightarrow\dfrac{x-51}{9}-1+\dfrac{x-52}{8}-1=\dfrac{x-53}{7}-1+\dfrac{x-54}{6}-1\)
=>x-60=0
hay x=60
b: \(\Leftrightarrow\left(x-2\right)^2-3\left(x+2\right)=x-14\)
\(\Leftrightarrow x^2-4x+4-3x-6-x+14=0\)
\(\Leftrightarrow x^2-8x+12=0\)
=>(x-2)(x-6)=0
=>x=2(loại) hoặc x=6(nhận)
Đặt \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{99.100}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(\Rightarrow A=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)
\(\Rightarrow A=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(\Rightarrow A-\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)=0\)
\(\Rightarrow\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)-\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)=0\)
\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)
\(=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{99}-\dfrac{1}{100}\right)\)
=\(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(\left(\dfrac{2}{1\cdot2}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{99\cdot100}\right)\cdot\dfrac{x^2+x+1945}{2}>1975\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)\)=>\(2\left(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\cdot\dfrac{x^2+x+1945}{2}>1975\left(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\)
=>\(x^2+x+1945>1975\)
=>\(x^2+x-30>0\)
=>(x+6)(x-5)>0
TH1: \(\left\{{}\begin{matrix}x+6>0\\x-5>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>-6\\x>5\end{matrix}\right.\)
=>x>5
TH2: \(\left\{{}\begin{matrix}x+6< 0\\x-5< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< -6\\x< 5\end{matrix}\right.\)
=>x<-6
Ta có 51/2.52/2...100/2
= 1.2.3....100/1.2...50.2.2...2 (nhân cả tử và mẫu với 1.2.3...50)
= 1.2.3...100/(1.2)(2.2)(3.2)...(50.2)
= 1.2.3...100/2.4.6...100
= 1.3.5...99 => đpcm nhớ giữ lời hứa đấy
Bài 2:b)Ta có:
D=(51*52*53*...*100):2^50.
=(51*53*55*...*99)*(52*54*56*...*100):2^50.
Khử 51*53*55*...*99 thì cần so sánh 1*3*5*...*41 với (52*54*56*...*100):2^50.
Lại có:
52*54*56*...*100:2^50=(52:2)*(54:2)*...*(100:2):(2^25) (vì 52;54;56;...;100 có 25 thừa số.
=26*27*28*...*50:2^25.
=(27*29*31*...*49)*(26*28*30*...*50):2^25
Khử với 1*3*5*...*49 thì cần so sánh 1*3*5*...*25 với (26*28*30*...*50):2^25.
Lại có:
26*28*30*...*50:2^25=(26:2)*(28:2)*(30:2)*...*(50:2):2^12(vì 26;28;30;...;50 có 13 thừa số).
=13*14*15*...*25:2^12.
=(13*15*17*19*21*23*25)*(14*16*18*20*22*24):2^12.
Khử với 1*3*5*...*25 thì cần so sánh 1*3*5*7*9*11 với (14*16*18*20*22*24):2^12.
Giờ số nhỏ rồi bấm máy tính so sánh là được.\
=>C=D.
Vậy C=D.
mấy câu kia dễ rồi tự l;àm nha mk nhắc câu khó thôi.
tk cho mk nha các bn.
-chúc ai tk mk học giỏi-
1/
a, x + (x+1) + (x+2) +...+ (x+100) = 2029099
(x+x+x+...+x) + (1+2+...+100) = 2029099
2011x + 2021055 = 2029099
2011x = 2029099 - 2021055
2011x = 8044
x = 8044 : 2011
x = 4
b, 2+4+6+....+2x = 210
=> 2(1+2+3+...+x) = 210
=> \(\frac{2x\left(x+1\right)}{2}=210\)
=> x(x+1) = 14.15
=> x = 14
2/
a, Vì B < 1
\(\Rightarrow B< \frac{2009^{2009}+1+2008}{2009^{2010}+1+2008}=\frac{2009^{2009}+2009}{2009^{2010}+2009}=\frac{2009\left(2009^{2008}+1\right)}{2009\left(2009^{2009}+1\right)}=\frac{2009^{2008}+1}{2009^{2009}+1}\)= A
Vậy A > B
b, Ta có:
\(D=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}.....\frac{100}{2}=\frac{51.52.53....100}{2^{50}}\)
\(=\frac{\left(51.52.53....100\right)\left(1.2.3.4....50\right)}{2^{50}.\left(1.2.3.4....50\right)}\)
\(=\frac{1.2.3.4.5.6.....100}{\left(2.1\right)\left(2.2\right).\left(2.3\right).....\left(2.50\right)}\)
\(=\frac{1.2.3.4.5.6......100}{2.4.6........100}=\frac{\left(1.3.5....99\right)\left(2.4.6....100\right)}{2.4.6....100}\)
\(=1.3.5....99=C\)
Vậy C = D
\(\Rightarrow=\frac{51\cdot52\cdot53\cdot...\cdot100\cdot\left(1\cdot2\cdot3\cdot...\cdot50\right)\cdot2\cdot2\cdot2\cdot....\cdot2}{51\cdot52\cdot53\cdot...\cdot100}\)
rút gọn còn lại:\(\frac{1\cdot2\cdot3\cdot...\cdot50\left(2\cdot2\cdot2\cdot..\cdot2\right)}{1}\)
\(=1\cdot2\cdot3\cdot....\cdot50\left(2\cdot2\cdot2\cdot2\cdot...\cdot2\right)\)(52 số 2)
ok!
phan gia huy:bn làm sai rùi!!!!