K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2018

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(=\left(\frac{1}{51}+\frac{1}{52}+....+\frac{1}{75}\right)+...+\left(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right)\)

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\)

\(\frac{1}{51}+\frac{1}{52}+..+\frac{1}{75}< \frac{1}{2}\)

\(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}< \frac{1}{75}+\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}=\frac{1}{3}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{2}+\frac{1}{3}=\frac{5}{6}< 1\)

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}>\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}\)

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}>\frac{1}{3}\)

\(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)

\(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}>\frac{1}{4}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)

12 tháng 8 2019

Biến đổi vp của đẳng thức :

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{50}\)

\(=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}-2\left[\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right]\)

\(=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{200}\)

15 tháng 4 2017

44444444444444444444444444444444444444444

15 tháng 4 2017

ngu vảy 

7 tháng 5 2019

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+...+\frac{1}{100}-1-\frac{1}{2}-...-\frac{1}{50}\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

26 tháng 4 2018

ta có 1/51>1/100

        1/52>1/100

        ..................

        1/100=1/100

\(\Rightarrow\)S=1/51+1/52+...+1/100>(1/100+1/100+...+1/100)=1/100.50=1/2

\(\Rightarrow\)S>\(\frac{1}{2}\)

cái chỗ 1/100+1/100+...+1/100 có 50 số bạn nhá

chúc bạn học tốt~

10 tháng 7 2017

Ta có:\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+............+\frac{1}{100}\)

\(=\left(\frac{1}{51}+\frac{1}{52}+.........+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+........+\frac{1}{100}\right)\)

\(>\frac{1}{75}.25+\frac{1}{100}.25=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{1}{2}\)

\(\left(\frac{1}{51}+\frac{1}{52}+..........+\frac{1}{75}\right)+\left(\frac{1}{76}+........+\frac{1}{100}\right)\)

\(< \frac{1}{50}.25+\frac{1}{75}.25=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}< 1\)

\(\Rightarrowđpcm\)

10 tháng 5 2017

Ta có: \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)(đpcm)

17 tháng 3 2017

Vì mọi phân số của tổng đều nhỏ hơn 1 nên tổng đó nhỏ hơn 1.

k nha

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(\Rightarrowđpcm\)

10 tháng 4 2018

free ire