Cho phương trình x2 - 2x +3-m =0 (m là tham số) tìm các giá trị cua m thoả mãn he thức 2x3 +(m+1)x2=16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để pt có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow4-4\left(m-1\right)\ge0\)\(\Leftrightarrow2\ge m\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(1\right)\\x_1x_2=m-1\end{matrix}\right.\)
\(x_1^4-x_1^3=x_2^4-x_2^3\)
\(\Leftrightarrow\left(x_1^4-x_2^4\right)-\left(x_1^3-x_2^3\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2\right)-\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left[2\left(x_1^2+x_2^2\right)-x_1^2-x_1x_2-x_2^2\right]=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1^2+x_2^2-x_1x_2\right)=0\)
\(\Leftrightarrow x_1-x_2=0\) (2) ( vì \(x_1^2-x_1x_2+x_2^2>0;\forall x,y\))
Từ (1) (2) \(\Rightarrow x_1=x_2=1\)
\(\Rightarrow x_1x_2=m-1=1\) \(\Leftrightarrow m=2\) (Thỏa)
Vậy...
Lời giải:
Để pt có 2 nghiệm pb thì:
$\Delta'=1-(2-m)=m-1>0\Leftrightarrow m>1$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=2-m\end{matrix}\right.\)
Khi đó:
$2x_1^3+(m+2)x_2^2=5$
$\Leftrightarrow 2x_1^3+(2x_1+2x_2-x_1x_2)x_2^2=5$
$\Leftrightarrow 2(x_1^3+x_2^3)+x_1(2-x_2)x_2^2=5$
\(\Leftrightarrow 2[(x_1+x_2)^3-3x_1x_2(x_1+x_2)]+x_1^2x_2^2=5\)
\(\Leftrightarrow 2[8-6(2-m)]+(2-m)^2=5\)
\(\Leftrightarrow m^2+8m-9=0\Leftrightarrow (m-1)(m+9)=0\)
Vì $m>1$ nên không có giá trị nào của $m$ thỏa mãn.
Đáp án C
Đặt 2 x = t PT đã cho với ẩn số t là: t 2 − 2 m t + 2 m = 0
Điều kiện: x 1 + x 2 = 3
⇒ 2 m = 2 x 1 .2 x 2 = 2 x 1 + x 2 = 2 3 = 8 ⇒ m = 4
1: Thay x=3 vào pt,ta được:
9+6+m=0
hay m=-15
2: \(\text{Δ}=2^2-4\cdot1\cdot m=-4m+4\)
Để phương trình có hai nghiệm thì -4m+4>=0
hay m<=1
Theo đề, ta có hệ phươg trình:
\(\left\{{}\begin{matrix}3x_1+2x_2=1\\x_1+x_2=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=5\\x_2=-7\end{matrix}\right.\)
Theo Vi-et,ta được:
\(x_1x_2=m\)
=>m=-35(nhận)
Δ=(-2)^2-4(m-3)
=4-4m+12=-4m+16
Để pt có hai nghiệm thì -4m+16>=0
=>-4m>=-16
=>m<=4
x1^2+x2^2-x1x2<7
=>(x1+x2)^2-3x1x2<7
=>2^2-3(m-3)<7
=>4-3m+9<7
=>-3m+13<7
=>-3m<-6
=>m>2
=>2<m<=4