Thu gọn đa thức
A=(4x^2 - 5xy + 3y^2) + (3x^2 + 2xy + y^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=x^2+2xy+\left(-3x^3+3x^3\right)+\left(2y^3-y^3\right)=x^2+2xy+y^3\)
\(P=\left(\dfrac{1}{3}x^2y-\dfrac{1}{3}x^2y\right)+\left(xy^2+\dfrac{1}{2}xy^2\right)-\left(xy+5xy\right)=\dfrac{3}{2}xy^2-6xy\)
\(A=\left(-6x^7y^6\right)\left(8x^3y^3\right)=\left(-6.8\right).\left(x^7.x^3\right).\left(y^6.y^3\right)=-48x^{10}y^9\).
\(B=-7xy^2-2xy+6xy^2+5xy+6=\left(-7xy^2+6xy^2\right)+\left(-2xy+5xy\right)+6=-xy^2+3xy+6\)
A + B = ( 4x2 - 5xy + 3y2 ) + ( 3x2 + 2xy - y2 )
= 4x2 - 5xy + 3y2 + 3x2 + 2xy - y2
= 7x2 - 3xy - 2y2
A - B = ( 4x2 - 5xy + 3y2 ) - ( 3x2 + 2xy - y2 )
= 4x2 - 5xy + 3y2 - 3x2 - 2xy + y2
= x2 - 7xy + 4y2
A + B = ( 4x2 - 5xy + 3y2 ) + ( 3x2 + 2xy - y2 )
= 4x2 - 5xy + 3y2 + 3x2 + 2xy - y2
= 7x2 - 3xy + 2y2
A - B = (4x2 - 5xy + 3y2 ) - ( 3x2 + 2xy - y2 )
= 4x2 - 5xy + 3y2 - 3x2 - 2xy + y2
= x2 - 7xy + 4y2
a.\(A=3xy^2+8xy+1\)
b.Thế `x=-1/2;y=-1` vào `A` ta được:
\(A=3.\left(-\dfrac{1}{2}\right).\left(-1\right)^2+8.\left(-\dfrac{1}{2}\right).\left(-1\right)+1\)
\(A=-\dfrac{3}{2}+4+1\)
\(A=\dfrac{-3+10}{2}\)
\(A=\dfrac{7}{2}\)
a: \(A=\left(-2xy^2+5xy^2\right)+\left(3xy+5xy\right)+1=3xy^2+8xy+1\)
b: Khi x=-1/2 và y=-1 thì \(A=3\cdot\dfrac{-1}{2}\cdot1+8\cdot\dfrac{-1}{2}\cdot\left(-1\right)+1\)
\(=-\dfrac{3}{2}+4+1=5-\dfrac{3}{2}=\dfrac{7}{2}\)
Sửa đề: \(B=3x^2+2xy+y^2\)
\(A+B+C=6x^2+6y^2\)
\(B-C-A=3x^2+2xy+y^2+x^2-3xy-2y^2-4x^2+5xy-3y^2\)
\(=4x^2-xy-y^2-4x^2+5xy-3y^2\)
\(=4xy-4y^2\)
Bài 1:
a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)
= \(x^2\) - 16 - 5\(x\) - 5 + \(x^2\) + \(x\)
= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)
= 2\(x^2\) - 4\(x\) - 21
b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)
= 3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7
= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)
= - 3\(x^2\) + 3\(xy\) - 3
A=(4x^2 - 5xy + 3y^2) + (3x^2 + 2xy + y^2)
=4x^2 - 5xy + 3y^2 + 3x^2 + 2xy + y^2
=(4x2+3x2)+(-5xy+2xy)+(3y2+y2)
=7x2-3xy+4y2