tìm các SNT abcd sao cho ab và ac là SNT và b2=cd + b - c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 3 nè : ta có a=42q+r=2*3*7q+r(q,r thuộc N,0<r<42 Vì a là SNT nên r ko chia hết cho 2,3,7 tìm các hợp số <42 loại chia hết cho 3,7 còn 25 r=25
Ta có: 6a + 13 là số nguyên tố và 25 nhỏ hơn hoặc bằng 6a + 13 , và 6a + 13 nhỏ hơn hoặc bằng 45
=> 6a + 13 thuộc { 29;31;37;41;43 }
+ Nếu 6a + 13 = 29 => 6a = 29 - 13 = 16 => a = 16/6 ( loại )
+ Nếu 6a + 13 = 31 => 6a = 31 - 13 = 18 => a = 18 : 6 = 3 ( thỏa mãn )
+ Nếu 6a + 13 = 37 => 6a = 37 - 13 = 24 => a = 24 : 6 = 4 ( thỏa mãn )
+ Nếu 6a + 13 = 41 => 6a = 41 - 13 = 28 => a = 28/6 ( loại )
+ Nếu 6a + 13 = 43 => 6a = 43 - 13 = 30 => a = 30 : 6 = 5 ( thỏa mãn )
Vậy a thuộc {3;4;5 } thì 6a + 13 là số nguyên
Vì x,y là số nguyên tố nên có 3 th:x,y lẻ.x,y chẵn, 1 chẵn , 1ler
Xét:
p=2=>p+4=2+4=6-> hợp số
p+8=2+8=10-> hợp số
=>loại
p=3=>p+4=3+4=7-> hợp số
p+8=3+8=11-> hợp số
=> chọn
p>3
=> p=3k+1(k thuộc z)-> p+8=3k+(1+8)=3k+9=3m(m thuộc z)=> hợp số => loại
=>p=3k+2(k thuộc z)->p+4=3k+(2+4)=3k+6=3n(n thuộc z)=> hợp số=> loại
Vậy p=3
Nếu p = 2 ⇒ p+ 2 = 4 ( loại)
Nếu p = 3 ⇒ p + 2 = 2 + 3 = 5 ( thỏa mãn)
p + 10 = 3 + 10 = 13 ( thỏa mãn)
Nếu p > 3 ⇒ p = 3k + 1 hoặc p = 3k + 2
Nếu p = 3k+ 1 ⇒ p +2 = 3k + 1 + 2 = 3k + 3 ⋮ 3 (loại)
Nếu p = 3k + 2 ⇒ p + 10 = 3k + 2 + 10 = 3k + 12 ⋮ 3 (loại)
Vậy p = 3 là số nguyên tố duy nhất thỏa mãn yêu cầu đề bài