chứng minh rằng hiệu các khoảng cách từ một điểm trên phần kéo dài của cạnh tam giác cân tới hai cạnh bên có giá trị không đổi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c1:
gọi D là điểm trên cạnh đáy kéo dài BC của tam giác cân ABC.(D thuộc tia BC)
H, K là hình chiếu của D trên AB, AC .do tam giác ABC cân tại A suy ra DB là phân giác HDK (1)
gọi CP là đường cao của tam giác ABC.kẻ CQ vuông góc DH (2)
theo (1) và (2) ta suy ra điều phải chứng minh
C2:
từ B kẻ BP vuông góc DK, BH vuông góc AC (3)
từ (1) và (3) suy ra điều phải chứng minh
Hạ DH vuông góc AB => DH là khoảng cách từ D đến AB
Hạ DK vuông góc AC => DK là khoảng cách từ D đến AC
Diện tích tam giác ABC = Diện tích tam giác ABD + Diện tích tam giác ACD
SABC = \(\frac{AB\times HD}{2}\)+ \(\frac{AC\times KD}{2}\)
Vì tam giác ABC cân tại A => AB = AC
Ta có:
SABC = \(\frac{AB}{2}\)x (HD + KD)
Vì SABC không đổi, AB không đổi => HD + KD không đổi => tổng khoảng cách từ D đến các cạnh AB, AC không đổi
Các bạn hãy nêu cách trồng 12 cây thành 6 hàng , mỗi hàng có 4 cây , vẽ hình minh họa ( dùng các dấu chấm để tượng trưng cho cây )
giúp mình với !!!!!!!!!!!!!!!!!!!!!!!!!!!!!
ủa , sao câu hỏi của bn giống mk vậy !
m.n ơi trả lời đi giúp chúng tớ với !
bc=db+dc
cho dù tổng khoảng cách từ d đến hai cạnh bên trên đáy bc cũng ko hay đổi vì tổng của db và dc luôn bằng bc, nó nằm trên bc
Chứng minh rằng tổng khoảng cách từ một điểm bên trong đến các cạnh của một tam giác đều- không đổi!
Gọi các cạnh của tam giác đều là a. Từ một điểm bất kỳ trong tam giác đều, hạ các đường cao (khoảng cách) tới các cạnh, lần lượt là h1, h2, h3.
Ta có S1 = a x h1/2; S2 = a x h2/2, S3 = a xh3/2.
S1 + S2 + S3 = a x (h1 + h2 + h3) /2
Mà S1 + S2+ S3 = S tam giác đều đã cho (không đổi), a không đổi
Suy ra, tổng (h1 + h2 + h3) không đổi.
Vậy h1,h2,h3 đều không thay đổi