BÀI 1:cho tam giác ABC (AB<AC; góc BAC>90). gọi I,K theo thứ tự là trung điểm AB,AC. hai đường tròn (I),(K) đường kính AB,AC cắt nhau tại điểm thứ hai D. tia BA cắt đường tròn (K) tại điểm thứ hai E, tia CA cắt đường tròn (i) tại điểm thứ hai F. chứng minh: a, ba điểm B,C,D thẳng hàng. b, tứ giác BFEC nội tiếp c, AD,BF,CE đồng qui d, tia DA là phân giác góc EDC
BÀI 2: Từ điểm M nằm ngoài đường tròn(0;R) vẽ 2 tiếp tuyến MA,MB và cát tuyến MCD. gọi I là trung điểm CD, gọi E,F,K lần lượt là giao điểm của đường thẳng AB với MO, MD, OI. chứng minh: a, R= OE.OM= OI.OK B, chứng minh M,A,B,O,I nằm trên một đường tròn
cho tam giác ABC ( AB<AC) có ba góc nhọc nội tiếp đường tròn tâm (O) và D là hình chiếu của B trên AO sao cho D nằm giữa A và O. gọi M là trung điểm của BC, N là giao điểm của BD và AC, F là giao điểm của MD và AC, E là giao điểm thứ hai của BD với (O), H là giao điểm của BF và AD.
1/ chứng minh tứ giác BDOM nội tiếp và góc MOD + NAE=180.
2/ chứng minh DF //CE.
3/ chứng minh CA là tia phân giác của góc BCE
4/ Chứng minh HN vuông góc với AB