K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

Ta có : 

\(2m^2\ge0\) ( với mọi m ) 

\(\Rightarrow\)\(2m^2+2\ge2\)

Dấu "=" xảy ra khi \(2m^2=0\)

\(\Rightarrow\)\(m^2=0\)

\(\Rightarrow\)\(m=0\)

Vậy \(P_{min}=2\) khi \(m=0\)

11 tháng 3 2018

bang 0 do 

 sao ngu the

NV
4 tháng 2 2021

\(T=\left(2m^4-4m^3+8m^2\right)+\left(4m^3-8m^2+16m\right)+\left(2m^2-4m+8\right)+10\)

\(T=2m^2\left(m^2-2m+4\right)+4m\left(m^2-2m+4\right)+2\left(m^2-2m+4\right)+10\)

\(T=2\left(m^2-2m+4\right)\left(m^2+2m+1\right)+10\)

\(T=2\left(m^2-2m+4\right)\left(m+1\right)^2+10\)

\(T=2\left[\left(m-1\right)^2+3\right]\left(m+1\right)^2+10\ge10\)

\(T_{min}=10\) khi \(m=-1\)

NV
15 tháng 3 2022

\(S=\dfrac{2m^2+7m+23}{m^2+2m+10}\Rightarrow Sm^2+2Sm+10S=2m^2+7m+23\)

\(\Leftrightarrow\left(S-2\right)m^2+\left(2S-7\right)m+10S-23=0\)

\(\Delta=\left(2S-7\right)^2-4\left(S-2\right)\left(10S-23\right)\ge0\)

\(\Leftrightarrow4S^2-16S+15\le0\)

\(\Rightarrow\dfrac{3}{2}\le S\le\dfrac{5}{2}\)

\(S_{min}=\dfrac{3}{2}\) khi \(m=-4\)

\(S_{max}=\dfrac{5}{2}\) khi \(m=2\)

15 tháng 3 2022

Nguyễn Việt Lâm Giáo viên, thầy cho em hỏi tên phương pháp làm của thầy được không ạ??

A=|m+1|+|m-1|=|m+1|+|1-m|>=|m+1+1-m|=2

Dấu = xảy ra khi -1<=m<=1

B=|2a-1|+|2a-3|=|2a-1|+|3-2a|>=|2a-1+3-2a|=2

Dấu = xảy ra khi 1/2<=a<=3/2

12 tháng 12 2021

Bài 1:

\(c,\text{PT có 2 }n_0\text{ phân biệt }\Leftrightarrow\Delta'=2^2-2m>0\Leftrightarrow2m< 4\Leftrightarrow m< 2\)

16 tháng 5 2017

M = 2m + 1 + 2m + m2

= m2 + 4m + 1

= (m + 2)- 3 >= -3

Vậy, MinM = -3 khi m = -2

17 tháng 7 2018

Đặt \(A=\frac{5-2m}{m^2+2}\Leftrightarrow Am^2+2A-5+2m=0\)

\(\Leftrightarrow Am^2+2m+\left(2A-5\right)=0\)

Để \(PT\) trên có nghiệm \(\Leftrightarrow\Delta'=1-A\left(2A-5\right)=-2A^2+5A+1\ge0\)

\(\Leftrightarrow\frac{5-\sqrt{33}}{4}\le A\le\frac{5+\sqrt{33}}{4}\)

Kết quả ko đẹp lắm nếu cảm thấy sai thì bạn lại đề; mình giải ko sai đâu

25 tháng 7 2017

Ta có \(A=\left(x^2+2\right)\left(y^2+2\right)=\left(xy\right)^2+2x^2+2y^2+4\)

\(=\left(xy\right)^2+2\left(x+y\right)^2-4xy+4\)\(=\left(2m+1\right)^2+2\left(m-2\right)^2-4\left(2m+1\right)+4\)

\(=4m^2+4m+1+2m^2-8m+8-8m-4+4\)

\(=6m^2-12m+9=6\left(m^2-2m+1\right)+3\)

Ta thấy \(6\left(m-1\right)^2\ge0\Rightarrow6\left(m-1\right)^2+3\ge3\Rightarrow A\ge3\)

Vậy Min A=3 khi m-1=0 hay m=1