tìm GTNN \(P=2m^2+2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(T=\left(2m^4-4m^3+8m^2\right)+\left(4m^3-8m^2+16m\right)+\left(2m^2-4m+8\right)+10\)
\(T=2m^2\left(m^2-2m+4\right)+4m\left(m^2-2m+4\right)+2\left(m^2-2m+4\right)+10\)
\(T=2\left(m^2-2m+4\right)\left(m^2+2m+1\right)+10\)
\(T=2\left(m^2-2m+4\right)\left(m+1\right)^2+10\)
\(T=2\left[\left(m-1\right)^2+3\right]\left(m+1\right)^2+10\ge10\)
\(T_{min}=10\) khi \(m=-1\)
\(S=\dfrac{2m^2+7m+23}{m^2+2m+10}\Rightarrow Sm^2+2Sm+10S=2m^2+7m+23\)
\(\Leftrightarrow\left(S-2\right)m^2+\left(2S-7\right)m+10S-23=0\)
\(\Delta=\left(2S-7\right)^2-4\left(S-2\right)\left(10S-23\right)\ge0\)
\(\Leftrightarrow4S^2-16S+15\le0\)
\(\Rightarrow\dfrac{3}{2}\le S\le\dfrac{5}{2}\)
\(S_{min}=\dfrac{3}{2}\) khi \(m=-4\)
\(S_{max}=\dfrac{5}{2}\) khi \(m=2\)
Nguyễn Việt Lâm Giáo viên, thầy cho em hỏi tên phương pháp làm của thầy được không ạ??
A=|m+1|+|m-1|=|m+1|+|1-m|>=|m+1+1-m|=2
Dấu = xảy ra khi -1<=m<=1
B=|2a-1|+|2a-3|=|2a-1|+|3-2a|>=|2a-1+3-2a|=2
Dấu = xảy ra khi 1/2<=a<=3/2
Bài 1:
\(c,\text{PT có 2 }n_0\text{ phân biệt }\Leftrightarrow\Delta'=2^2-2m>0\Leftrightarrow2m< 4\Leftrightarrow m< 2\)
Đặt \(A=\frac{5-2m}{m^2+2}\Leftrightarrow Am^2+2A-5+2m=0\)
\(\Leftrightarrow Am^2+2m+\left(2A-5\right)=0\)
Để \(PT\) trên có nghiệm \(\Leftrightarrow\Delta'=1-A\left(2A-5\right)=-2A^2+5A+1\ge0\)
\(\Leftrightarrow\frac{5-\sqrt{33}}{4}\le A\le\frac{5+\sqrt{33}}{4}\)
Kết quả ko đẹp lắm nếu cảm thấy sai thì bạn lại đề; mình giải ko sai đâu
Ta có \(A=\left(x^2+2\right)\left(y^2+2\right)=\left(xy\right)^2+2x^2+2y^2+4\)
\(=\left(xy\right)^2+2\left(x+y\right)^2-4xy+4\)\(=\left(2m+1\right)^2+2\left(m-2\right)^2-4\left(2m+1\right)+4\)
\(=4m^2+4m+1+2m^2-8m+8-8m-4+4\)
\(=6m^2-12m+9=6\left(m^2-2m+1\right)+3\)
Ta thấy \(6\left(m-1\right)^2\ge0\Rightarrow6\left(m-1\right)^2+3\ge3\Rightarrow A\ge3\)
Vậy Min A=3 khi m-1=0 hay m=1
Ta có :
\(2m^2\ge0\) ( với mọi m )
\(\Rightarrow\)\(2m^2+2\ge2\)
Dấu "=" xảy ra khi \(2m^2=0\)
\(\Rightarrow\)\(m^2=0\)
\(\Rightarrow\)\(m=0\)
Vậy \(P_{min}=2\) khi \(m=0\)
bang 0 do
sao ngu the