Chứng minh rằng 8102 - 2102 \(⋮\)10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\((0,125)^{100}.8^{102}=(\frac{1}{8})^{100}.8^{102}=\frac{8^{102}}{8^{100}}=8^{102-100}=8^2=64\)
a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.
b)
Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)
c) Cách làm tương tự câu b.
đáng lẽ ra nên đặt với n thõa mãn điều kiện gì chứ
a, Vì A có 3 chữ số tận cùng là 008 => A chia hết cho 8 (1)
A có tổng các chữ số là 12 chia hết cho 3 (2)
Từ (1) và (2) với (3,8)=1 => A chia hết cho 24
b, Vì A có chữ số tận cùng là 8 nên A không phải là số chính phương.
a) A có 3 chữ số tận cùng là 008 nên chia hết cho 8 (1)
A có tổng các chữ số là 9 nên chia hết cho 3 (2)
Từ (1) và (2) kết hợp với (3,8) = 1 => A chia hết cho 24
b) A có chữ số tận cùng là 8 nên không là số chính phương
8 dong du voi -2 theo mod 10
=> 8102 dong du voi 2102 theo mod 10
2 dong du voi 2 theo mod 10
=> 2102 dong du voi 2102 theo mod 10
=> 8102-2102 chia het cho 10
Áp dụng tính chất : a^2n - b^2n chia hết cho a^2-b^2 với a,b,n thuộc N sao thì :
8^102 - 2^102 = 8^2.51 - 2^2.51 chia hết co 8^2 - 2^2 = 60
Mà 60 chia hết cho 10
=> 8^102 - 2^102 chia hết cho 10
Tk mk nha