K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C E D P H K x M N

a) xét \(\Delta EAB\)và \(\Delta CAD\)có:

\(\hept{\begin{cases}AE=AC\left(gt\right)\\\widehat{EAB}=\widehat{DAC}\left(đđ\right)\\AB=AD\left(gt\right)\end{cases}}\)

\(\Rightarrow\Delta EAB=\Delta CAD\)(c - g - c)

\(\Rightarrow BE=DC\)( 2 cạnh tương ứng)

b) có \(\hept{\begin{cases}BE=2MB\left(gt\right)\\CD=2ND\left(gt\right)\\BE=CD\left(cmt\right)\end{cases}}\)

\(\Rightarrow MB=ND\)

\(\Delta EAB=\Delta CAD\left(cmt\right)\)

\(\Rightarrow\widehat{D}=\widehat{ABE}\)( 2 cạnh tương ứng )

xét \(\Delta DAN\)\(\Delta BAM\)

\(\hept{\begin{cases}ND=MB\left(cmt\right)\\\widehat{D}=\widehat{ABM}\left(cmt\right)\\AD=AB\left(gt\right)\end{cases}}\)

\(\Rightarrow\Delta DAN=\Delta BAM\left(c-g-c\right)\)

\(\Rightarrow\)AM = AN ( 2 cạnh tương ứng )

       \(\widehat{DAN}=\widehat{MAB}\)( 2 cạnh tương ứng )

mà \(\widehat{DAN}+\widehat{NAB}=180^o\left(kb\right)\)

\(\Rightarrow\widehat{MAB}+\widehat{NAB}=180^o\Rightarrow\widehat{MAN}=180^o\)

\(\Rightarrow\)M, N, A thẳng hàng

c) gọi BC cắt Ax tại P

\(\Rightarrow\hept{\begin{cases}BH\le BP\left(cgv\le ch\right)\\CK\le CP\left(cgv\le ch\right)\end{cases}}\)

\(\Rightarrow BH+CK\le BP+CP\)

\(\Rightarrow BH+CK\le BC\)

d) có\(BH+CK\le BC\left(cmt\right)\)

\(\Rightarrow GTLN\)của \(BH+CK=BC\)

dấu bằng xảy ra

\(\Leftrightarrow BH=BP;CK=CP\)

\(\Leftrightarrow H\equiv P;K\equiv P\)

\(\Leftrightarrow Ax\perp BC\)

\(\Rightarrow BH+CK\)lớn nhất

25 tháng 4 2017

Ta có:  C ^ = P ^ mà góc C và góc P là hai góc nhọn kề của tam giác ABC và tam giác MNP

Do đó để tam giác ABC và tam giác MNP bằng nhau theo trường hợp cạnh góc vuông – góc nhọn kề thì cần thêm điều kiện  A C = M P

Đáp án A

23 tháng 8 2021

Mọi ng giúp mình nhé

 

Bạn vào ô công thức để nhập lại số đo góc đi bạn. Khó hiểu quá

23 tháng 9 2021

a) Ta có: \(2\widehat{B}=7\widehat{C}\Rightarrow\widehat{C}=\dfrac{2}{7}\widehat{B}\)

Ta có: Tam giác ABC vuông tại A

\(\Rightarrow\widehat{B}+\widehat{C}=90^0\)

\(\Rightarrow\widehat{B}+\dfrac{2}{7}\widehat{B}=90^0\)\(\Rightarrow\dfrac{9}{7}\widehat{B}=90^0\Rightarrow\widehat{B}=70^0\)

\(\Rightarrow\widehat{C}=\dfrac{2}{7}\widehat{B}=20^0\)

b) Ta có: AD là phân giác góc A

\(\Rightarrow\widehat{DAC}=\dfrac{1}{2}\widehat{A}=45^0\)

Xét tam giác ADC có:

\(\widehat{ADC}+\widehat{DAC}+\widehat{C}=180^0\)

\(\Rightarrow\widehat{ADC}=180^0-\widehat{DAC}-\widehat{C}=180^0-45^0-20^0=115^0\)

 

NV
10 tháng 9 2021

1.

\(A+B+C=180^0\Rightarrow A=180^0-\left(B+C\right)=70^0\)

Kẻ đường cao BD

Trong tam giác vuông ABD:

\(cotA=\dfrac{AD}{BD}\Rightarrow AD=BD.cotA\)

Trong tam giác vuông BCD:

\(cotC=\dfrac{CD}{BD}\Rightarrow CD=BD.cotC\)

\(\Rightarrow AD+CD=BD.cotA+BD.cotC\)

\(\Rightarrow AC=BD.\left(cotA+cotC\right)\)

\(\Rightarrow BD=\dfrac{AC}{cotA+cotC}\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}BD.AC=\dfrac{1}{2}.\dfrac{AC^2}{cotA+cotC}=\dfrac{35^2}{2\left(cot70^0+cot50^0\right)}\approx509,1\left(cm^2\right)\)

NV
10 tháng 9 2021

Hình vẽ bài 1:

undefined

Bài 2: Cho tam giác ABC có góc A>90 độ , lấy điểm M thuộc cạnh AB .a) So sánh AC và MC b) Chứng minh tam giác MBC là tam giác tùc) Chứng minh AC <MC <BCBài 3: Cho tam giác MNP có Góc N>90 độ , trên tia đối của tia NP lấy điểm Q .a) So sánh MN và MP b) Chứng minh tam giác MPQlà tam giác tù.c) Chứng minh MN<MP<MQBài 4: Cho tam giác ABC có AB=3 cm, AC=4 cma) So sánh góc B với gócCb) Hạ AH vuông góc với BC tại H . So sánh góc...
Đọc tiếp

Bài 2: Cho tam giác ABC có góc A>90 độ , lấy điểm M thuộc cạnh AB .
a) So sánh AC và MC 
b) Chứng minh tam giác MBC là tam giác tù
c) Chứng minh AC <MC <BC
Bài 3: Cho tam giác MNP có Góc N>90 độ , trên tia đối của tia NP lấy điểm Q .
a) So sánh MN và MP 
b) Chứng minh tam giác MPQlà tam giác tù.
c) Chứng minh MN<MP<MQ
Bài 4: Cho tam giác ABC có AB=3 cm, AC=4 cm
a) So sánh góc B với gócC
b) Hạ AH vuông góc với BC tại H . So sánh góc BAH và góc CAH
Bài 5: Cho tam giác ABC có AB = 5 cm, AC = 3 cm
a) So sánh góc B với góc C
b) So sánh hai góc ngoài tại các đỉnh B và C của tam giác ABC
Bài 6: Cho tam giác ABC vuông tại A có AC=2AB . Lấy điểm E trên cạnh AC sao cho
AB=AE . Trên tia đối của tia EB lấy điểm D sao cho EB=ED
a) Chứng minh tam giác ABE= tam giác CDE 
b) So sánh góc ABE  và góc CBE

0