cho A=1/101+1/102+...+1/200
Chứng minh 5/8<A<3/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu b
C= 1/181+1/182+...1/200< 20/200=1/10
A=B+C<4/9+1/10=40/90+9/90=49/90 mà 49/90<3/4 ( quy đồng)
Vậy A<3/4
** D= 1/101+1/101+...1/150>50.(1/101)=50/101>1...
E= 1/151+1/152+...+1/200> 50.(1/151)=50/151>1/3
D+E>1/3+1/3=2/3 mà 2/3>5/8
Vậy A>5/8
a)Ta CM: S(n)>7/12 (*) bằng qui nạp
+S(3)=1/4+1/5+1/6>7/12
+giã sử S(k)>7/12 (k>=3, k nguyên)
tức là:S(k)=1/(k+1)+1/(k+2)+...+1/2k>7/12
+Ta có: S(k+1)=1/(k+2)+1/(k+3)+...+1/(2k+2)
=1/(k+1)+1/(k+2)+...
..+1/2k+1/(2k+1)+1/(2k+2)-1/(k+1)
=S(k)+1/(2k+1)+1/(2k+2)-1/(k+1)
=S(k)+1/[(2k+1)(2k+2)]>7/2
theo nguyên lí qui nạp=>(*) đúng với mọi n>3, n nguyên
câu b tương tự
Ta có: 𝐶=1101+1102+1103+...+1200C=1011+1021+1031+...+2001
=(1101+1102+...+1120)+(1121+1122+1123+...+1150)+(1151+1152+1153+...+1180)+(1181+1182+1183+...+1200)=(1011+1021+...+1201)+(1211+1221+1231+...+1501)+(1511+1521+1531+...+1801)+(1811+1821+1831+...+2001)
⇔𝐶>20⋅1120+30⋅1150+30⋅1180+20⋅1200⇔C>20⋅1201+30⋅1501+30⋅1801+20⋅2001
⇔𝐶>16+15+16+110=1930=76120⇔C>61+51+61+101=3019=12076
⇔𝐶>75120=58⇔C>12075=85
hay 𝐶>58C>85(đpcm)
TỰ thay C=a nhA
Ta có : \(\frac{1}{101}\) > \(\frac{1}{150}\)
\(\frac{1}{102}\) > \(\frac{1}{150}\)
.....................................................
\(\frac{1}{149}\) > \(\frac{1}{150}\)
=> \(\frac{1}{101}\) + \(\frac{1}{102}\) + .......... + \(\frac{1}{150}\) > \(\frac{1}{150}\) + \(\frac{1}{150}\) + .......... + \(\frac{1}{150}\)( có 50 p/s ) = \(\frac{1}{150}\) . 50 = \(\frac{1}{3}\)(1)
Ta lại có : \(\frac{1}{151}\) > \(\frac{1}{200}\)
\(\frac{1}{152}\) > \(\frac{1}{200}\)
............................................
\(\frac{1}{199}\)> \(\frac{1}{200}\)
=> \(\frac{1}{151}\) + \(\frac{1}{152}\) + .................. + \(\frac{1}{200}\) > \(\frac{1}{200}\)+ \(\frac{1}{200}\) + ...................+ \(\frac{1}{200}\)(có 50 p/ )=\(\frac{1}{200}\) . 50 = \(\frac{1}{4}\)(2)
Từ (1) và (2)
=> \(\frac{1}{101}\)+ \(\frac{1}{102}\) + \(\frac{1}{103}\) + ...................+ \(\frac{1}{200}\)> \(\frac{1}{3}\) + \(\frac{1}{4}\) = \(\frac{4}{12}\) + \(\frac{3}{12}\) = \(\frac{7}{12}\)
Vậy A > \(\frac{7}{12}\)
\(A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{120}\left(a\right)\)
\(\Rightarrow A=\left(\dfrac{1}{101}+\dfrac{1}{102}+...\dfrac{1}{125}\right)+\left(\dfrac{1}{126}+\dfrac{1}{127}+...\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...\dfrac{1}{175}\right)+\left(\dfrac{1}{176}+\dfrac{1}{177}+...\dfrac{1}{200}\right)\)
\(\Rightarrow A>25.\dfrac{1}{125}+25.\dfrac{1}{150}+25.\dfrac{1}{175}+25.\dfrac{1}{200}\)
\(\Rightarrow A>\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\)
\(\Rightarrow A>\dfrac{168+140+120+105}{840}=\dfrac{533}{840}>\dfrac{5}{8}\left(\dfrac{533}{840}>\dfrac{525}{840}\right)\)
\(\Rightarrow A>\dfrac{5}{8}\left(1\right)\)
\(\left(a\right)\Rightarrow A=\left(\dfrac{1}{101}+...\dfrac{1}{120}\right)+\left(\dfrac{1}{121}+...\dfrac{1}{140}\right)+\left(\dfrac{1}{141}+...\dfrac{1}{160}\right)+\left(\dfrac{1}{161}+...\dfrac{1}{180}\right)+\left(\dfrac{1}{181}+...\dfrac{1}{200}\right)\)
\(\Rightarrow A< 20.\dfrac{1}{100}+20.\dfrac{1}{120}+20.\dfrac{1}{140}+20.\dfrac{1}{160}+20.\dfrac{1}{180}\)
\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{504+420+360+315+280}{2520}=\dfrac{1879}{2520}< \dfrac{3}{4}\left(\dfrac{1879}{2520}< \dfrac{1890}{2520}\right)\)
\(\Rightarrow A< \dfrac{3}{4}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{5}{8}< A< \dfrac{3}{4}\left(dpcm\right)\)