K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 8 2017

Lời giải:

Ta có :

\(66m^2+9n^3-2008\equiv -2008\equiv 2\pmod 3\)

Do đó , ta có thể viết \(66m^2+9n^3-2008=3k+2\) (\(k\in\mathbb{N}\) )

Khi đó, \(A=3^{3k+2}+4=9.3^{3k}+4\)

Thấy rằng \(3^3\equiv 1\pmod {13}\Rightarrow 3^{3k}\equiv 1\pmod {13}\)

\(\Rightarrow 9.3^{3k}+4\equiv 9+4\equiv 0\pmod {13}\)

Do đó, \(A\vdots 13\). Để \(A\in\mathbb{P}\Rightarrow A=13\)

\(\Leftrightarrow 2^{66m^2+9n^3-2008}=9\Rightarrow 66m^2+9n^3-2008=2\)

\(\Leftrightarrow 22m^2+3n^3=670\)

\(\Rightarrow 22m^2=670-3n^2< 670\Leftrightarrow m^2<\frac{670}{22}\)

\(\Leftrightarrow m\leq 5\). Thử từ \(0\rightarrow 5\) ta thu được \((m,n)=(1,6)\)

Vậy cặp $(m,n)=(1,6)$ thỏa mãn

26 tháng 11 2017

n thuộc N. =>n lớn hơn hoặc bằng 0

Xét n theo hai trường hợp:

TH1:n lớn hơn 0

Mà n lớn hơn 0 thì 3n+9*n+36 chia hết cho 3

Vì 3n chia hết cho 3, 9*n chia hết cho 3, và 36 cũng chia hết cho 3

=>Nếu n lớn hơn 0 thì 3n+9*n+36 là hợp số

TH2: n=0

Nếu n=0 thì 3n+9*n+36=30+9*0+36=1+0+36=37 là số nguyên tố(tmđb)

Vậy n=0