so sánh
2010/2009 và 2011/2010
1/101+1/102+1/103+..................+1/200 và 1
AI NHANH VÀ ĐÚNG MÌNH TICK CHO!!!!!!!!!!!!!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét 2010 . 2010 = (2009+1).2010
= 2009.2010 +2010
= (2009.2010+2009)+1
= 2009.(2010+1)+1
= 2009.2011+1
>= 2009.2010
=> 2010/2009 > 2011/2010
Tk mk nha
a, \(\frac{2010}{2009}\)và \(\frac{2011}{2010}\)
Ta có:
2010.2010 = ( 2009 + 1 ) . 2010
= 2009 . 2010 + 2010
= ( 2009 . 2010 + 2019 ) + 1
= 2019 . ( 2010 + 1 ) + 1
= 2019 . 2011 + 1
\(\Rightarrow\)\(\frac{2010}{2009}>\frac{2011}{2010}\)
b, \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...........+\frac{1}{200}\)và 1
Ta có:
\(\frac{1}{101}< 1;\frac{1}{102}< 1;\frac{1}{103}< 1;........;\frac{1}{200}< 1\)
\(\Rightarrow\)\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.............+\frac{1}{200}< 1\)
Đặt \(A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
Ta có:
\(\dfrac{1}{101}>\dfrac{1}{200}\)
\(\dfrac{1}{102}>\dfrac{1}{200}\)
\(\dfrac{1}{103}>\dfrac{1}{200}\)
...
\(\dfrac{1}{199}>\dfrac{1}{200}\)
\(\Rightarrow A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)
\(=\dfrac{1}{200}.100\)
\(=\dfrac{1}{2}\)
Mà \(\dfrac{1}{2}< 1\)
\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}< 1\).
N = 101^103 + 1 / 101^104 + 1 < 101^103 + 1 + 100 / 101^104 + 1 + 100
= 101^103 + 101 / 101^104 + 101
= 101(101^102 + 1) / 101(101^103 + 1)
= 101^102 + 1 / 101^103 + 1 = M
=> N < M
101M=101(101^102+1)/101^103+1
=101^103+1+100/101^103+1
=1+100/101^103+1
101N=101(101^103+1)/101^104+1
=101^104+1+100/101^104+1=1+100/101^104+1
THẤY;100/101^104+1<100/101^103+1
nên;M>N
Ta có :
\(\frac{1}{101}>\frac{1}{200}\)
\(\frac{1}{102}>\frac{1}{200}\)
\(\frac{1}{103}>\frac{1}{200}\)
\(.........\)
\(\frac{1}{200}=\frac{1}{200}\)
Cộng vế với vế ta được :
\(\frac{1}{101}+\frac{1}{102}+.....+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}\) (có 100 số hạng \(\frac{1}{200}\))\(=\frac{100}{200}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{200}>\frac{1}{2}\)
a) Ta có: \(\frac{2010}{2009}=1+\frac{1}{2009}\)(1)
\(\frac{2011}{2010}=1+\frac{1}{2010}\)(2)
Từ (1) và (2)
Mà: \(\frac{1}{2009}>\frac{1}{2010}\)
\(\Rightarrow\frac{2010}{2009}>\frac{2011}{2010}\)
b) Ta có: 100 số hạng của dãy đều bé hơn 1/100
\(\Rightarrow\)\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< \frac{1}{100}\cdot100\)
Hay \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< 1\)