xác định k sao cho phương trình 2x^2 - (1-4k)x + k^2 - 16 = 0 có nghiệm trái dấu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện để có pt bậc hai có 2 nghiệm phân biệt cùng dấu là:
\(\hept{\begin{cases}\Delta'>0\\x_1.x_2=\frac{c}{a}>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}k^2-4k+5>0\\4k-5>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(k-2\right)^2+1>0\\k>\frac{5}{4}\end{cases}}\)
\(\Leftrightarrow k>\frac{5}{4}\)
Phương trình có hai nghiệm trái dấu khi và chỉ khi suy ra m < -2.
Tổng của hai nghiệm bằng -3 khi thỏa mãn điều kiện m < -2.
Đáp số: m = -5.
1) Để phương trình có hai nghiệm trái dấu thì
\(\left\{{}\begin{matrix}m\ne0\\\Delta'>0\\P< 0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m\ne0\\-m+4>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m\ne0\\m< 4\\m< 3\end{matrix}\right.\) \(\Rightarrow\) 0\(\ne\)m<3.
Vậy: với 0\(\ne\)m<3, phương trình đã cho có hai nghiệm trái dấu.
2) Thừa hưởng từ kết quả câu 1, để nghiệm âm có giá trị tuyệt đối lớn hơn thì S<0 \(\Leftrightarrow\) \(\dfrac{-2\left(m-2\right)}{m}\)<0 \(\Leftrightarrow\) m>2.
Vậy: với 2<m<3, phương trình đã cho có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn.
3) Với 0\(\ne\)m<4 (điều kiện để phương trình có hai nghiệm):
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2\left(m-2\right)}{m}\\x_1x_2=\dfrac{m-3}{m}\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{4}{m}-2\\x_1x_2=1-\dfrac{3}{m}\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\dfrac{x_1+x_2+2}{4}=\dfrac{1}{m}\\\dfrac{1-x_1x_2}{3}=\dfrac{1}{m}\end{matrix}\right.\) \(\Rightarrow\) 3x1+3x2+4x1x2+2=0.
4) Với 0\(\ne\)m<4 (điều kiện để phương trình có hai nghiệm):
A=x12+x22=(x1+x2)2-2x1x2=\(\left(\dfrac{-2\left(m-2\right)}{m}\right)^2-2.\dfrac{m-3}{m}\)=\(2-\dfrac{10}{m}+\dfrac{16}{m^2}\)=\(\left(\dfrac{4}{m}-\dfrac{5}{4}\right)^2+\dfrac{7}{16}\)\(\ge\dfrac{7}{16}\).
Dấu "=" xảy ra khi x=16/5 (nhận).
Vậy minA=7/16 tại m=16/5.
k thỏa mãn hệ : \(\left\{{}\begin{matrix}\Delta_x>0\\\dfrac{c}{a}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}k^2-4k+5>0\\\dfrac{4k-5}{1}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(k-2\right)^2+1>0\\k>\dfrac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow k>\dfrac{5}{4}\)
Điều kiện để phương trình bậc hai có hai nghiệm trái dấu là \(\frac{c}{a}< 0\) (vì khi này thì \(a.c< 0\) và \(\Delta=b^2-4ac>0\))
=> \(k^2-16>0\)
\(k< -4\) hoặc \(k>4\)