Rút gọn :
1/x+1/(x+1)+1/(x+2+.....+1/(x+100)
giúp giùm mik nhanh nha ~
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1:
a,\(\left(3x-2\right)\left(x-3\right)=3x^2-9x-2x+6=3x^2-11x+6\)
b,\(\left(2x+1\right)\left(x+3\right)=2x^2+6x+x+3=2x^2+7x+3\)
c,\(\left(x-3\right)\left(3x-1\right)=3x^2-x-9x+3=3x^2-10x+3\)
B2:
1)\(x^2-\left(x+4\right)\left(x-1\right)=x^2-\left(x^2-x+4x-4\right)=x^2-x^2+x-4x+4=-3x+4\)
2)\(x\left(x+2\right)-\left(x-2\right)\left(x+4\right)=x^2+2x-\left(x^2+4x-2x-8\right)\)
\(=x^2+2x-x^2-4x+2x+8=8\)
1: \(=\dfrac{1}{\sqrt{2}}\cdot\left(\sqrt{2x-2\sqrt{2x-1}}-\sqrt{2x+2\sqrt{2x-1}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\left|\sqrt{2x-1}-1\right|-\left|\sqrt{2x-1}+1\right|\right)\)
TH1: x>=1
\(A=\dfrac{1}{\sqrt{2}}\left(\sqrt{2x-1}-1-\sqrt{2x-1}-1\right)=-\sqrt{2}\)
TH2: 1/2<=x<1
\(A=\dfrac{1}{\sqrt{2}}\left(1-\sqrt{2x-1}-\sqrt{2x-1}-1\right)=-\sqrt{4x-2}\)
2:
\(=\sqrt{x-1+6\sqrt{x-1}+9}-\sqrt{x-2-2\sqrt{x-2}+1+3}\)
\(=\sqrt{x-1}+3-\sqrt{\left(\sqrt{x-2}-1\right)^2+3}\)
\(\left(x+1\right)\left(x+2\right)\left(x^2+4\right)\left(x-1\right)\left(x^2+1\right)\left(x-2\right)=\left(x+1\right)\left(x-1\right)\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\left(x^2+1\right)\)
\(=\left(x^2-1\right)\left(x^2+1\right)\left(x^2+4\right)\left(x^2-4\right)=\left(x^4-1\right)\left(x^4-16\right)\)
\(=\left(x-\dfrac{1}{3}\right)\left(\dfrac{4}{3}x+\dfrac{1}{9}-x+\dfrac{1}{3}\right)\\ =\left(x-\dfrac{1}{3}\right)\left(\dfrac{1}{3}x+\dfrac{4}{9}\right)\\ =\dfrac{1}{3}x^2+\dfrac{4}{9}x-\dfrac{1}{9}x-\dfrac{4}{27}\\ =\dfrac{1}{3}x^2+\dfrac{1}{3}x-\dfrac{4}{27}\)
Bài 1:
a)
<=> 3x - 18 - 5x + 10 = 24
<=> 3x - 5x = 24 + 18 - 10
<=> -2x = 32
<=> x = 32 : (-2)
<=> x = -16
b)
<=> -4x + 20 - 8x + 16 = 48
<=> -4x - 8x = 48 - 20 - 16
<=> -12x = 12
<=> x = 12 : (-12)
<=> x = -1
Bài 2:
\(=a^2-ab+ab-b^2\)
\(=a^2-b^2\)
a) 3(x-6)-5(x-2) = 24
<=> 3x -36 -5x + 10 =24
<=> -2x = 50
<=> x = -25
b) -4(x-5) -8(x-2) = 48
<=> -4x +20 - 8x +16 = 48
<=> -12x = 12
<=> x = -1
(a+b)(a-b) = a^2 -ab +ab -b^2 = a^2 - b^2
\(\left(x^2-x+1\right)\left(x^2-x-1\right)\)
\(=\left[\left(x^2-x\right)+1\right]\left[\left(x^2-x\right)-1\right]\)
\(=\left(x^2-x\right)^2-1^2\)
\(=x^4-2x^3+x^2-1\)