Cho n là số tự nhiên lẻ và n không chia hết cho 3. Chứng minh rằng (n+1)(n-1) chia hết cho 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Nếu n lẻ thì n + 1 chẵn do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên không chia hết cho n vì n là số lẻ
Bài 2 :
Nếu n chẵn thì n + 1 lẻ do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên chia hết cho n vì n là số chẵn
- Vì n là số tự nhiên lẻ
=> 24n có tận cùng là 24
=> 24n + 1 có tận cùng là 24 + 1 = 25
Vì số chia hết cho 25 là số có chữ số tận cùng là 25 => 24n + 1 chia hết cho 25 (1)
- Vì 24 : 23 = 1 (dư 1)
=> 24n : 23 cũng sẽ dư 1
=> 24n + 1 : 23 sẽ có dư là 2
=> 24n + 1 sẽ không chia hết cho 23 (2)
Từ (1) và (2) suy ra: 24n + 1 chia hết cho 25 nhưng ko chia hết cho 23 với n là số tự nhiên lẻ
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
a lẻ nên a=2k+1
(a-1)(a+1)
\(=\left(2k+1-1\right)\left(2k+1+1\right)\)
\(=2k\left(2k+2\right)\)
\(=4k\left(k+1\right)\)
Vì k;k+1 là hai số tự nhiên liên tiếp
nên \(k\left(k+1\right)⋮2\)
=>\(4k\left(k+1\right)⋮\left(4\cdot2\right)=8\)
=>\(\left(a-1\right)\left(a+1\right)⋮8\)
Vì a không chia hết cho 3 nên a=3c+1 hoặc a=3c+2
TH1: a=3c+1
\(\left(a-1\right)\left(a+1\right)\)
\(=\left(3c+1-1\right)\left(3c+1+1\right)\)
\(=3c\left(3c+2\right)⋮3\left(1\right)\)
TH2: a=3c+2
\(\left(a-1\right)\left(a+1\right)\)
\(=\left(3c+2-1\right)\left(3c+2+1\right)\)
\(=\left(3c+3\right)\left(3c+1\right)\)
\(=3\left(c+1\right)\left(3c+1\right)⋮3\left(2\right)\)
Từ (1) và (2) suy ra \(\left(a-1\right)\left(a+1\right)⋮3\)
mà \(\left(a-1\right)\left(a+1\right)⋮8\)
và ƯCLN(3;8)=1
nên \(\left(a-1\right)\left(a+1\right)⋮\left(3\cdot8\right)=24\)
các bạn có thể cho mình biết được không,đang cần gấp lắm.
Thật buồn cho bạn, đến năm 2020 rồi mà vẫn không có người trả lời. Mình cũng định trả lời nhưng có lẽ nó không cần nữa rồi. Mình rất xin lỗi vì bây giờ mình mới nhìn thấy câu hỏi của bạn. Thôi thì lỡ rồi, mình chỉ nói vậy coi như an ủi phần nào cho tâm hồn mỏng manh đã bị tổn thương sâu sắc của bạn. Chân thành xin lỗi.
\(A=n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Tich trên là tích của 3 số tự nhiên liên tiếp
\(\left(n-1\right)n\left(n+1\right)⋮24\) khi đồng thời chia hết cho 3 và 8
+ C/m tích trên chia hết cho 3
Nếu \(n⋮3\Rightarrow A⋮3\)
Nếu n chia 3 dư 1 \(\Rightarrow n-1⋮3\Rightarrow A⋮3\)
Nếu n chia 3 dư 2 \(\Rightarrow n+1⋮3\Rightarrow A⋮3\)
\(\Rightarrow A⋮3\forall n\)
C/m tích trên chia hết cho 8
Do n là số tự nhiên lẻ
Nếu \(n=1\Rightarrow A=0⋮8\)
Nếu \(n\ge3\) => (n-1) và (n+1) chẵn
Đặt \(n=2k+1\left(k\ge1\right)\)
\(\Rightarrow A=\left(2k+1-1\right)\left(2k+1\right)\left(2k+1+1\right)=\)
\(=2k\left(2k+1\right)\left(2k+2\right)=\left(4k^2+2k\right)\left(2k+2\right)=\)
\(=8k^3+8k^2+4k^2+4k=8\left(k^3+k^2\right)+4k\left(k+1\right)\)
Với k chẵn đặt \(k=2p\Rightarrow4k\left(k+1\right)=8p\left(2p+1\right)⋮8\)
\(\Rightarrow A=8\left(k^3+k^2\right)+8p\left(2p+1\right)⋮8\)
Với k lẻ đặt \(k=2p+1\Rightarrow4k\left(k+1\right)=4\left(2p+1\right)\left(2p+1+1\right)=\)
\(4\left(2p+1\right)2\left(p+1\right)=8\left(2p+1\right)\left(p+1\right)⋮8\)
\(\Rightarrow A⋮8\forall n\)
\(\Rightarrow A⋮3x8\forall n\Rightarrow A⋮24\forall n\)