K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2023

\(A=n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

Tich trên là tích của 3 số tự nhiên liên tiếp

\(\left(n-1\right)n\left(n+1\right)⋮24\) khi đồng thời chia hết cho 3 và 8

+ C/m tích trên chia hết cho 3

Nếu \(n⋮3\Rightarrow A⋮3\)

Nếu n chia 3 dư 1 \(\Rightarrow n-1⋮3\Rightarrow A⋮3\)

Nếu n chia 3 dư 2 \(\Rightarrow n+1⋮3\Rightarrow A⋮3\)

\(\Rightarrow A⋮3\forall n\)

C/m tích trên chia hết cho 8

Do n là số tự nhiên lẻ

Nếu \(n=1\Rightarrow A=0⋮8\)

Nếu \(n\ge3\) => (n-1) và (n+1) chẵn

Đặt \(n=2k+1\left(k\ge1\right)\)

\(\Rightarrow A=\left(2k+1-1\right)\left(2k+1\right)\left(2k+1+1\right)=\)

\(=2k\left(2k+1\right)\left(2k+2\right)=\left(4k^2+2k\right)\left(2k+2\right)=\)

\(=8k^3+8k^2+4k^2+4k=8\left(k^3+k^2\right)+4k\left(k+1\right)\)

Với k chẵn đặt \(k=2p\Rightarrow4k\left(k+1\right)=8p\left(2p+1\right)⋮8\)

\(\Rightarrow A=8\left(k^3+k^2\right)+8p\left(2p+1\right)⋮8\)

Với k lẻ đặt \(k=2p+1\Rightarrow4k\left(k+1\right)=4\left(2p+1\right)\left(2p+1+1\right)=\)

\(4\left(2p+1\right)2\left(p+1\right)=8\left(2p+1\right)\left(p+1\right)⋮8\)

\(\Rightarrow A⋮8\forall n\)

\(\Rightarrow A⋮3x8\forall n\Rightarrow A⋮24\forall n\)

 

16 tháng 8 2017

+ta có n là số tự nhiên lẻ =>24^n có chữ số tận cùng là 24 (cái này xem kĩ hơn về phần tính chất chia hét của lũy thừa nhé)

=>24^n+1 có chữ số tận cùng là 25 ( vì số chữ số tận cùng nào thì chia hết cho số đó =>25 chia hết 25)
 + ta có 24:23 (có dư là 1) =>24^n :23 (dư 1 )=>24^n+1 :23 (dư 2) => 24^n+1 k chia hết cho 23 

15 tháng 9 2016

\(n^3-n\)=   \(n\left(n^2-1\right)\)=  \(\left(n-1\right)n\left(n+1\right)\)

Do (n-1)n(n+1) la h cua 3 so tự nhiên liên tiếp nên chia het cho 2 va 3

mà (2,3) =1 nen h chia het cho 6

Lại có n lẻ nên tích sẽ có 1 số chia hết cho 4

=> (n-1)n(n+1) chia hết cho 4*6 = 24

Hay \(n^3-1\)chia hết cho 24 với mọi số tự nhiên n lẻ

Đúng thì

9 tháng 11 2017

Theo mình thì khi ta có a chia hết c, b chia hết cho c và (a,b)=1 thì ta mới có thể kết luận là ab chia hết cho c. 

Ví dụ: 12 chia hết cho 4, 12 chia hết cho 6 nhưng 12 không chia hết cho 24. 

Mình chỉ biết như thế còn không biết cách giải mong các bạn giúp đỡ.

15 tháng 9 2016

Vì n lẻ 

=> n = 2k + 1 ( với k laf số tự nhiên )

\(\Rightarrow n^3-n=\left(2k+1\right)^3-\left(2k+1\right)\)

\(\Rightarrow n^3-n=\left(2k+1\right)\left[\left(2k+1\right)^2-1\right]\)

\(\Rightarrow n^3-n=\left(2k+1\right)\left(2k+2\right)2k\)

Vì 2k ; 2k + 1 ; 2k + 2 là 3 số tự nhiên liên tiếp .

\(\Rightarrow\left(2k+1\right)\left(2k+2\right)2k\) chia hết cho 3

\(\Rightarrow n^3-n⋮3\)

Mặt khác : \(n^3-n=\left(2k+1\right)\left(2k+2\right)2k\)

\(\Rightarrow n^3-n=\left(2k+1\right)2\left(k+1\right)2k\)

\(\Rightarrow n^3-n=\left(2k+1\right)4\left(k+1\right)k\) 

Xét thấy k và k+1 là 2 số tự nhiên liên tiếp .

=> k(k+1) chia hết cho 2

\(\Rightarrow\left(2k+1\right)4\left(k+1\right)k⋮8\)

\(\Rightarrow n^3-n⋮8\) 

Mà (3;8) = 1

=> n- n chia hết cho 24 ( đpcm )

15 tháng 9 2016

hay quá bn ơi

 

20 tháng 3 2021

n³-n=n(n²-1)=(n-1)n(n+1)

Ta có trong 3 số tự nhiên liên tiếp thì luôn có 1 số chia hết cho 3 nên n³-n chia hết cho 3.

Vì n lẻ => n-1 và n+1 chia hết cho 2

Vì n lẻ => n = 4k+1 hoặc 4k + 3

Với n = 4k + 1 => n-1 =4k chia hết cho 4, n+1=4k+2 chia hết cho 2

=> n³-n=(n-1)n(n+1) chia hết cho 4.3.2 = 24

Với n = 4k + 3 => n-1 = 4k+2 chia hết cho 2, n+ 1 = 4(k+1) chia hết cho 4

=> n³-n=(n-1)n(n+1) chia hết cho 4.3.2 = 24

Vậy n³-n chia hết cho 24 với n lẻ, n ∈ N

20 tháng 3 2021

\(\Rightarrow n^3-n=\left(n-1\right)n\left(n+1\right)\) (*)

(*) là tích của 3 số tự nhiên liên tiếp nên tồn tại 1 số chia hết cho 3 \(\Rightarrow n^3-n⋮3\left(1\right)\)(1)

Vì n  là số lẻ \(\Rightarrow n=2k+1\left(k\in N\right)\) Thay vào (*) ta được:

\(\Rightarrow n^3-n=\left(2k+1-1\right)\left(2k+1\right)\left(2k+1+1\right)=2k\left(2k+2\right)\left(2k+1\right)=4k\left(k+1\right)\left(2k+1\right)\) k(k+1) là tích của 2 số tự nhiên liên tiếp \(\Rightarrow\) tồn  tại 1 số chia hết cho 2 \(\Rightarrow k\left(k+1\right)⋮2\Rightarrow4k\left(k+1\right)\left(2k+1\right)⋮8\Rightarrow n^3-n⋮8\)(2)

Từ (1) và (2) kết hợp với (3;8)=1 \(\Rightarrow n^3-n⋮24\)

 

9 tháng 10 2017

n^3+3n^2-n-3

=(n^3-n)+(3n^2-3)

=n(n^2-1)+3(n^2-1)=(n^2-1)(n+3)

Xét 8=3^2-1

bạn áp dụng vào công thức trên

=>n^2-1 chia hết cho 8

nên nhân với số nào cũng chia hết cho 8

NV
18 tháng 9 2021

a. 

Đề bài sai, ví dụ \(n=1\) lẻ nhưng  \(1^2+4.1+8=13\) ko chia hết cho 8

b.

n lẻ \(\Rightarrow n=2k+1\)

\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48