K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2015

áp dụng quy tắc 

số số hạng= (số cuối-số đầu) chí cho khoảng cách rồi cộng với 1

Tổng=(số đầu +số cuối ) nhân với số số số hạng rồi chia cho 2

12 tháng 1 2016

S=\(\frac{3^0+1}{2}+\frac{3^1+1}{2}+...+\frac{3^{n-1}+1}{2}\)

S=\(\frac{\left(3^0+1\right)+\left(3^1+1\right)+...+\left(3^{n-1}+1\right)}{2}\)

2S=(30+31+...+3n-1)+(1+1+...+1)                     (n số hạng 1)

2S=\(\frac{3^n-1}{2}\)+n

2S=\(\frac{3^n-1}{4}+\frac{n}{2}\)

(chỗ 30+31+...+3n-1 mình tính theo công thức nên tắt)

3 tháng 4 2016

S=(3^0+1/2)+(3^1/2+1/2)+(3^2/2+1/2)+....+(3^n-1/2+1/2)

=n*1/2+1/2*(3^0+3^1+3^2+...+3^n-1)

=n^2/2+(3^n-1/4)=3^n+2-1/4

~~~~~~~~~~~~~~~~~~~~~

25 tháng 3 2017

\(S=1+2+5+14+....+\frac{3^{x-1}+1}{2}\)

\(=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+.....+\frac{3^{x-1}+1}{2}\)

\(=\frac{\left(3^0+1\right)+\left(3^1+1\right)+\left(3^2+1\right)+.....+\left(3^{x-1}+1\right)}{2}\)

\(=\frac{\left(1+3+3^2+.....+3^{x-1}\right)+x}{2}\)

Đặt \(A=1+3+3^2+....+3^{x-1}\)

\(3A-A=\left(3+3^2+....+3^x\right)-\left(1+3+....+3^{x-1}\right)\)

\(2A=3^x-1\Rightarrow A=\frac{3^x-1}{2}\)

\(\Rightarrow S=\frac{\frac{3^x-1}{2}+x}{2}\)

1 tháng 1 2016

Đặt P=31-1+32-1+33-1+34-1+...+3n-1

=>P=30+31+32+33+...+3n-1

=>3.P=31+32+33+34+...+3n

=>3.P-P=31+32+33+34+...+3n-30-31-32-33-...-3n-1

=>2.P=3n-30

=>2.P=3n-1

=>\(P=\frac{3^n-1}{2}\)

Lại có: S=1+2+5+14+...+\(\frac{3^{n-1}+1}{2}\)

=>\(S=\frac{3^{1-1}+1}{2}+\frac{3^{2-1}+1}{2}+\frac{3^{3-1}+1}{2}+\frac{3^{4-1}+1}{2}+...+\frac{3^{n-1}+1}{2}\)

=>\(S=\frac{3^{1-1}+1+3^{2-1}+1+3^{3-1}+1+3^{4-1}+1+...+3^{n-1}+1}{2}\)

=>\(S=\frac{\left(3^{1-1}+3^{2-1}+3^{3-1}+3^{4-1}+...+3^{n-1}\right)+\left(1+1+1+1+...+1\right)}{2}\)

=>\(S=\frac{P+1.n}{2}\)

=>\(S=\frac{\frac{3^n-1}{2}+n}{2}\)

=>\(S=\frac{\frac{3^n-1}{2}+\frac{2n}{2}}{2}\)

=>\(S=\frac{\frac{3^n-1+2n}{2}}{2}\)

=>\(S=\frac{3^n-1+2n}{4}\)