\(\sqrt{x-94}\)+\(\sqrt{96-x}\)=x2-190x+9027
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT\le\sqrt{\left(1+1\right)\left(x-94+96-x\right)}=2\)
\(VP=x^2-190x+9027=\left(x-95\right)^2+2\ge2\)
Dấu = xảy ra khi \(x=95\)
\(1,\Leftrightarrow x^2+10x+25=x^2-4x-21\\ \Leftrightarrow14x=-46\\ \Leftrightarrow x=-\dfrac{23}{7}\\ 2,\Leftrightarrow x^3+8=15+x^3+2x\\ \Leftrightarrow2x=-7\Leftrightarrow x=-\dfrac{7}{2}\\ 3,\Leftrightarrow\left(x+3\right)^2=0\\ \Leftrightarrow x=-3\\ 4,\Leftrightarrow x^3-9x^2+27x-27=0\\ \Leftrightarrow\left(x-3\right)^3=0\\ \Leftrightarrow x-3=0\Leftrightarrow x=3\\ 5,\Leftrightarrow4x^2+4x+1-4x^2-16x-16=9\\ \Leftrightarrow-12x=24\Leftrightarrow x=-2\\ 6,\Leftrightarrow x^2-3x+5x-15=0\\ \Leftrightarrow\left(x-3\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
4) Ta có: \(P=\dfrac{x-2}{x+2\sqrt{x}}-\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x-2-\sqrt{x}-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
5) Ta có: \(B=\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)\)
=1-x
\(\left(x^2-x-6\right)\left(x^2-5\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+2\right)\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)
Mà \(x\in Q\)
\(\Rightarrow x=\left\{-2;3\right\}\)
Pt\(\Leftrightarrow\)\(\left[{}\begin{matrix}x^2-x-6=0\\x^2-5=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}3\\-2\\-\sqrt{5}\\\sqrt{5}\end{matrix}\right.\)
Đáp án A
Lời giải:
1. Chỉ áp dụng được khi $x\geq 0$
$x-1=(\sqrt{x}-1)(\sqrt{x}+1)$
2. $x^2-1=(x-1)(x+1)$
3. $x-4=(\sqrt{x}-2)(\sqrt{x}+2)$ (chỉ áp dụng cho $x\geq 0$)
4. $x^2-4x+4=x^2-2.2x+2^2=(x-2)^2$
5. $x-4\sqrt{x}+4=(\sqrt{x})^2-2.2\sqrt{x}+2^2=(\sqrt{x}-2)^2$
6. $\frac{(\sqrt{x}+1)^2}{(\sqrt{x}-1)(\sqrt{x}+1)}+\frac{2x}{x-1}$
$=\frac{x+2\sqrt{x}+1}{x-1}+\frac{2x}{x-1}=\frac{3x+2\sqrt{x}+1}{x-1}$
ĐKXĐ: \(x\ge0\)
\(\left(x^2-x-m\right)\sqrt{x}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)
Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm
Do đó:
a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm
\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)
b. Để pt có 2 nghiệm pb
TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0
\(\Leftrightarrow m=0\)
TH2: (1) có 2 nghiệm trái dấu
\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)
\(\Rightarrow m\ge0\)
c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)
Ta có vế trái \(={x^2+190x+9025+2} ={(x-95)^2+2}≥ 2\)
Đặt vế vế phải là A
\(=> A^2= {2+ 2\sqrt{(x-94)(96-x)}}\) ≤ 4
=> A ≤ 2
Dấu bằng xảy ra khi và chỉ khi cả hai vế đều bằng 2
=> x=2
Vậy .....
Mình ghi nhầm x=94 nha lỗi bàn phím