Tìm STN a sao cho\(\frac{6a+15}{5a+11}\)đạt GTLN .Tìm GTLN đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
TA CÓ : 32-2X/11-X
=10+22-2X/11-X
=10+2(11-X)/11-X
=10/11-X + 2(11-X)/11-X
=10/11-X +2
ĐỂ Amin =>10/11-X + 2 BÉ NHẤT
=> 10/11-X BÉ NHẤT
=> 11-X LỚN NHẤT . MÀ X thuôc Z
=>11-x=11 => X=0
=> Amin=32-2x0/11-0 =32/11
VÂY Amin=32/11 <=> X=0
\(A=\frac{32-2x}{11-x}=\frac{10}{11-x}+\frac{22-2x}{11-x}=\frac{10}{11-x}+\frac{2\left(11-x\right)}{11-x}=\frac{10}{11-x}+2\)
A đạt giá trị lớn nhất => \(\frac{10}{11-x}\) lớn nhất => 11-x lớn nhỏ nhất > 0
mà x thuộc Z => 11-x=1 => x=10
Vậy \(A_{max}=\frac{10}{11-10}+2=12\) khi x=10
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn phải ghi cả cách làm nữa, mà đây đâu phải là kết quả bài này
Đây là tìm số a để các biểu thức có GTLN và GTNN chứ ko phải là tìm kết quả của các giá trị.(Xin đọc kĩ đề)
![](https://rs.olm.vn/images/avt/0.png?1311)
Cho biểu thức:
A=\(\frac{2004x+1}{2005x-2005}\)với x\(\ne\)1
Tìm số nguyên x để A đạt GTLN?Tìm GTLN đó
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{2004x+1}{2005x-2005}=\frac{2004x+1}{2005\left(x-1\right)}=\frac{2004\left(x-1\right)+2005}{2005\left(x-1\right)}=\frac{2004}{2005}+\frac{1}{x-1}\)
\(A_{max}\Leftrightarrow\frac{1}{x-1}max\)
Nếu x > 1 thì x-1 < 0 \(\Rightarrow\frac{1}{x-1}>0\)
Nếu x<1 thì x-1 <0 \(\Rightarrow\frac{1}{x-1}< 0\)
Xét \(x>1;\)ta có
\(\frac{1}{x-1}max\)=> x-1 là số nguyên dương nhỏ nhất
\(\Rightarrow x-1=1\Rightarrow x=2\left(t/m\right)\)
Vậy \(B_{max}=1\frac{2004}{2005}\Leftrightarrow x=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{10n-3}{2n-5}=\frac{10n-25+22}{2n-5}=\frac{5.\left(2n-5\right)}{2n-5}+\frac{22}{2n-5}=5+\frac{22}{2n-5}\) có GTLN
<=> \(\frac{22}{2n-5}\) có GTLN <=> 2n-5 có GTNN. Vì 2n-5 \(\ne\) 0 nên => 2n - 5 = 1 => 2n = 6 => n = 3.
Vậu n = 3 thỏa mãn đề bài
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có P=\(\frac{20-x-5\sqrt{x}+4\sqrt{x}}{\sqrt{x}+5}\)
P=\(\frac{\sqrt{x}\left(4-\sqrt{x}\right)+5\left(4-\sqrt{x}\right)}{\sqrt{x}+5}\)
P=\(\frac{\left(\sqrt{x}+5\right).\left(4-\sqrt{x}\right)}{\sqrt{x}+5}\)
P=\(4-\sqrt{x}\)
b) Ta có P=\(4-\sqrt{x}\)\(\le\)4 với mọi x\(\ge0\)
=> P đạt GTLN là 4 khi \(\sqrt{x}=0\)
=> x=0