Cho A =1/101 + 1/102 +...+ 1/150
So sánh A với 1/3.
Giúp mình với nhaa!! Đang cần gấp!!Thanks mọi người nhiều!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để Đó mình lo cho:
Ta có:
\(\frac{1}{101}+\frac{1}{102}+.......+\frac{1}{199}+\frac{1}{200}=A\)\(A\)
=>101A=\(101\times\left(\frac{1}{101}+\frac{1}{102}+......+\frac{1}{199}+\frac{1}{200}\right)\)
=>101A=\(\left(101\times\frac{1}{101}\right)+\left(101\times\frac{1}{102}\right)+........+\left(101\times\frac{1}{199}\right)+\left(101\times\frac{1}{200}\right)\)
=>101A=\(1+\frac{101}{102}+.....+\frac{101}{199}+\frac{101}{200}>1\)
=>101A>1
=>A>1
Giải:
Ta gọi:
A=101/102+102/103
B=101+102/102+103
Ta có:
B=101+102/102+103
B=101/102+103+102/102+103
Vì 101/102+103<101/102
102/102+103<102/103
nên A>B
Chúc bạn học tốt!
Lời giải:
a.
\(\frac{n+1}{n+2}=\frac{n+1}{n+2}+1-1=\frac{2n+3}{n+2}-1\)
\(> \frac{2n+3}{n+3}-1=\frac{(n+3)+n}{n+3}-1=\frac{n}{n+3}\)
b.
\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{(10^{12}-1)-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)
\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{(10^{11}+1)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)
$\Rightarrow 10A< 10B\Rightarrow A< B$
1/ Ta có : tất cả các p/s ở tổng A đều có tử bằng 1 . Mà MS 101 < 102 ; 103 ; ... ; < 200 .
Nên 1/101 là p/s lớn nhất ( lớn hơn 1/102 ; 1/103 ; ... ; 1/200 )
2/ Tổng A có phân số là : ( 200 - 101 ) : 1 + 1 = 100 (phân số ) .
Nếu thay cả 100 p/s bằng p/s lớn nhất : 1/101 thì tổng A = 1/101 . 100 = 100/101 < 1 .
=> 1/101 + 1/102 + 1/103 + ... + 1/200 ( 100p/s ) < 1/101 + 1/101 + 1/101 + ... + 1/101 (100 p/s ) < 1 .
Vậy : A < 1
Ta có : 1/101 > 1/150 , 1/102 > 1/150 , ... , 1/149 > 1/150
=> 1/101 + 1/102 + ...+ 1/149 + 1/150 > 1/150 x 50 ( có tất cả 50 số )
=> A > 50/150
=> A > 1/3
Vậy A > 1/3
Chúc bạn học giỏi !!! TK mình nha !!!
Bạn tham khảo nhé
Ta có :
\(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}>\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}=50.\frac{1}{150}=\frac{50}{150}=\frac{1}{3}\)
Vậy \(A>\frac{1}{3}\)
Chúc bạn học tốt ~