Em hãy lập bản thống kê theo số học sinh của lớp em.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
b)
+) Lớp 10A
Số trung bình \(\overline x = \frac{{5.1 + 6.4 + 7.5 + 8.8 + 9.14 + 10.8}}{{1 + 4 + 5 + 8 + 14 + 8}} = 8,35\)
Sắp sếp số liệu theo thứ tự không giảm, ta được: \(5,6,6,6,6,7,7,7,7,7,\underbrace {8,...,8}_8,\underbrace {9,...,9}_{14},\underbrace {10,...,10}_8\)
Do \(n = 40\), là số chẵn nên trung vị là: \({M_e} = \frac{1}{2}(9 + 9) = 9\)
Mốt \({M_e} = 9\)
+) Lớp 10B
Số trung bình \(\overline x = \frac{{5.4 + 6.6 + 7.10 + 8.10 + 9.6 + 10.4}}{{4 + 6 + 10 + 10 + 6 + 4}} = 7,5\)
Sắp sếp số liệu theo thứ tự không giảm, ta được: \(5,5,5,5,\underbrace {6,..,6}_6,\underbrace {7,...,7}_{10},\underbrace {8,...,8}_{10},\underbrace {9,...,9}_6,10,10,10,10\)
Do \(n = 40\), là số chẵn nên trung vị là: \({M_e} = \frac{1}{2}(7 + 8) = 7,5\)
Mốt \({M_e} = 7;{M_e} = 8.\)
+) Lớp 10C
Số trung bình \(\overline x = \frac{{5.1 + 6.3 + 7.17 + 8.11 + 9.6 + 10.2}}{{1 + 3 + 17 + 11 + 6 + 2}} = 7,6\)
Sắp sếp số liệu theo thứ tự không giảm, ta được: \(5,6,6,6,\underbrace {7,...,7}_{17},\underbrace {8,...,8}_{11},\underbrace {9,...,9}_6,10,10\)
Do \(n = 40\), là số chẵn nên trung vị là: \({M_e} = \frac{1}{2}(7 + 7) = 7\)
Mốt \({M_e} = 7\)
+) So sánh:
Số trung bình: \(8,35 > 7,6 > 7,5\) => Điểm số của HS các lớp theo thứ tự giảm dần là 10A, 10C, 10B.
Số trung vị: \(9 > 7,5 > 7\)=> Điểm số của HS các lớp theo thứ tự giảm dần là 10A, 10B, 10C.
Mốt: Lớp 10A có 14 điểm 9, Lớp 10B có 10 điểm 7 và 10 điểm 8, Lớp 10C có 17 điểm 7. Do đó so sánh theo mốt thì điểm số các lớp giảm dàn theo thứ tự là: 10A, 10B, 10C.
Bảng phân bố tần suất ghép lớp
Chiều cao của 120 học sinh lớp 11 trường THPT M
b) Trong số học sinh có chiều cao chưa đến 155cm, học sinh nữ đông hơn học sinh nam.
Tham khảo:
a)
b) Không thể tính chính xác, chúng ta chỉ có thể tinh số gần đúng thời gian tự học trung bình của các học sinh trong lớp
c) Giá trị đại diện của nhóm bằng trung bình giá trị đầu mút phải và trái của nhóm đó
Nhóm \( \ge 4.5\) là nhóm mở nên ta dựa theo nhóm gần đó nhất là nhóm [3;4.5) để lấy giá trị đại diện
Số trung binh của mẫu số liệu: : \(\bar x = \frac{{0.75 \times 8 + 2.25 \times 23 + 2.75 \times 6 + 5.25 \times 3}}{{40}} = 2.25\).
Bảng phân bố tần số ghép lớp
Chiều cao của 120 học sinh lớp 11 ở trường trung học phổ thông M
Lớp chiều cao (cm) | Tần số | |
Nam | Nữ | |
[135; 145) | 5 | 8 |
[145; 155) | 9 | 15 |
[155;165) | 19 | 16 |
[165;175) | 17 | 14 |
[175; 185] | 10 | 7 |
Cộng | 60 | 60 |
Bảng phân bố tần suất ghép lớp
Lớp chiều cao (cm) | Tần suất | |
Nam | Nữ | |
[135; 145) | 8,33 | 13,33 |
[145; 155) | 15,00 | 25,00 |
[155;165) | 31,67 | 26,67 |
[165;175) | 28,33 | 23,33 |
[175; 185] | 16,67 | 11,67 |
Cộng | 100% | 100% |
Tham khảo!
Em sẽ lọc dữ liệu theo giá trị qua các bước sau:
- Chọn cột dữ liệu cần lọc
- Chọn tab "Data" trên thanh menu
- Nhấn vào nút "Filter" trong nhóm "Sort & Filter"
- Nhấn vào mũi tên xuống bên cạnh tiêu đề cột để mở hộp thoại "Filter"
- Chọn các giá trị cần lọc bằng cách chọn các ô trong danh sách hoặc nhập các giá trị cần lọc vào ô tìm kiếm
- Nhấn OK để áp dụng bộ lọc
Hương Ly
TỔ
SỐ HS
SỐ NỮ
SỐ NAM
1
13
8
5
2
14
7
7
3
13
6
5