cho a>b>c>0 và a^2+b^2+c^2=1. cmr a^3/(b+c)+b^3/(a+c)+c^3/(a+b)>=1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Đánh giá tương tự , ta cũng có :
\(\frac{b}{1+c^2}\ge b-\frac{bc}{2},\frac{c}{1+a^2}\ge c-\frac{ab}{2}\)
Từ đó suy ra :
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\frac{ab+bc+c}{2}=3-\frac{ab+bc+ca}{2}\)
Mặt khác ,ta biết rằng \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3.\)Từ đây ,kết hợp với đánh giá ở trên ,ta có kết quả cần chứng minh.
\(Ta\)\(có\) \(\frac{a}{1+b^2}\ge a-\frac{ab^2}{1+b^2}\)
Áp dụng bất đẳng thức \(a^2+b^2\ge2ab\)ta có
\(a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Chứng minh tương tụ với \(\frac{b}{1+c^2};\frac{c}{1+a^2}\)ta được
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\frac{ab+bc+ac}{2}\) \(\left(1\right)\)
Mặt khác ta có :
\(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
\(Hay\)\(3^2\ge3\left(ab+bc+ac\right)\)
\(\Rightarrow ab+bc+ca\le3\)\(\left(2\right)\)
\(Từ\)\(\left(1\right)\)\(\left(2\right)\)\(\Rightarrow\)\(a+b+c-\frac{ab+bc+ac}{2}\)\(\ge3-\frac{3}{2}=\frac{3}{2}\)\(\left(3\right)\)
\(Từ\)\(\left(1\right)\)\(\left(3\right)\)\(\Rightarrow\)\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
\(\left(đpcm\right)\)
3/ Áp dụng bất đẳng thức AM-GM, ta có :
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)
\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)
\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)
Cộng 3 vế của BĐT trên ta có :
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)
Do đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Từ đkđb
\(\Leftrightarrow2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow\dfrac{ab+bc+ac}{abc}=0\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=-\dfrac{1}{c}\)
\(\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=-\dfrac{1}{c^3}\)
\(\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
Hớ hớ bài này mình cũng làm rồi.
Ta có: (a+b+c)2=a2+b2+c2
<=> a2+b2+c2+2(ab+bc+ca)=a2+b2+c2
<=>2(ab+bc+ca)=0
<=>ab+bc+ca=0
\(\Leftrightarrow\dfrac{ab+bc+ca}{abc}=0\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
=>\(\dfrac{1}{a}+\dfrac{1}{b}=-\dfrac{1}{c}\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^3=\left(-\dfrac{1}{c}\right)^3\)
=> \(\dfrac{1}{a^3}+\dfrac{3}{a^2b}+\dfrac{3}{ab^2}+\dfrac{1}{b^3}=-\dfrac{1}{c^3}\)
=>\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=-\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=-\dfrac{3}{ab}.\left(-\dfrac{1}{c}\right)=\dfrac{3}{abc}\)
=> Đpcm.
ta có: (a+b+c)2 = a2 + b2 + c2
=> 2.(ab+ac+bc) = 0
ab + ac + bc = 0
=> 1/a + 1/b + 1/c = 0
Lại có: \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}-\frac{3}{abc}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right).\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}-\frac{1}{ac}-\frac{1}{bc}\right).\)
\(=0.\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}-\frac{1}{ac}-\frac{1}{bc}\right)=0\)
=> 1/a3 + 1/b3 + 1/c3 -3/abc = 0
=> 1/a3 + 1/b3 + 1/c3 = 3/abc
b) \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (chuyển vế qua)
\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
Do VP >=0 với mọi a, b, c. Nên để đăng thức xảy ra thì a = b = c