(1/2)10:(1/2)4
Giups mình với mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
N=1/2+1/22+...+1/210
2N=1+1/2+...+1/29
2N-N=1-1/210=1-1/1024=1023/1024
Giải:
N=1/2+1/22+1/23+...+1/29+1/210
2N=1+1/2+1/22+...+1/28+1/29
2N-N=(1+1/2+1/22+...+1/28+1/29)-(1/2+1/22+1/23+...+1/29+1/210)
N=1-1/210=1023/1024
Chúc bạn học tốt!
\(\frac{1}{2}\left(\frac{4}{9}-x\right)-\frac{3}{2}\left(16-x\right)+\frac{1}{2}\left(5x+10\right)=0\)
\(\Leftrightarrow\frac{2}{9}-\frac{1}{2}x-24+\frac{3}{2}x+\frac{5}{2}x+5=0\)
\(\Leftrightarrow-\frac{169}{9}=\frac{7}{2}x\Leftrightarrow x=-\frac{338}{63}\)
Sai thì thông cảm cho mk nha
Lời giải:
a.
\(\frac{n+1}{n+2}=\frac{n+1}{n+2}+1-1=\frac{2n+3}{n+2}-1\)
\(> \frac{2n+3}{n+3}-1=\frac{(n+3)+n}{n+3}-1=\frac{n}{n+3}\)
b.
\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{(10^{12}-1)-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)
\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{(10^{11}+1)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)
$\Rightarrow 10A< 10B\Rightarrow A< B$
Tính:
(-2)2.3 -(110+8):(-3)2
=4.3-(1+8):9
=12-9:9
=12-1
=11
Lời giải:
$A=\underbrace{(100+98+96+....+2)}_{M}-\underbrace{(99+97+....+1)}_{N}$
Tổng số hạng của $M$: $(100-2):2+1=50$
$M=(100+2).50:2=2550$
Tổng số hạng của $N$: $(99-1):2+1=50$
$N=(99+1).50:2=2500$
$A=M-N=2550-2500=50$
Sửa đề: A=100+98+96+...+2-99-97-...-1
=100-99+98-97+...+2-1
=1+1+...+1
=50
\(\frac{1}{3}+....+\frac{2}{x.\left(x+1\right)}=\frac{1999}{2001}\)
=>\(\frac{1}{2}.\left(\frac{1}{3}+...+\frac{2}{x.\left(x+1\right)}\right)=\frac{1999}{2001}.\frac{1}{2}\)
\(\Rightarrow\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x.\left(x+1\right)}=\frac{1999}{4002}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{1999}{4002}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2001}\)
=> x=2000
Tìm stn biết: 1/3 + 1/6 + 1/10 + ...+2/x(x+1)=1999/2001
Bài giải: Gọi x là số tự nhiên cần tìm
Cho S= 1/3 + 1/6 +1/10 +...+ 1/x(x+1)
\(\Rightarrow\)S= 2/6 + 2/12+ 2/20 +...+ 2/2[x(x+1)]
\(\Rightarrow\)1/2S= 1/2.3 + 1/3.4 + 1/ 4.5 +...+1/2[x(x+1)]
\(\Rightarrow\)1/2S=1/2-1/3+1/3-1/4+...+1/(x-1) .(x+1)
\(\Leftrightarrow\)1/2S=1/2-1/x+1
Vì S = 1999 / 2001\(\Rightarrow\)1/2S=1/2-1 . (x+1)=1999/2001-1998-2001=1/2001
\(\Rightarrow\)1/x+1=1/2001
\(\Leftrightarrow\)x+1=2001
x =2001-1 =2000
Vậy số tự nhiên đó là: 2000
\((\frac{1}{2})\)10 : \((\frac{1}{2})^4 \)
=(\(\frac{1}{2}\))10-4
= \(=(\frac{1}{2})^6\)