GIÚP MÌNH NHANH ĐẦY ĐỦ VẼ HÌNH MÌNH CẢM ƠN Ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HF là đường cao ứng với cạnh huyền AB, ta được:
\(AF\cdot AB=AH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)
\(M=896+892+888+...+24\)
\(M=\frac{\left(896+24\right).219}{2}=100740\)
\(N=18.21+21+21.79\)
\(N=21.\left(18+1+79\right)=21.100\)
\(N=2100\)
b,
N=18x21+21+21x79
N=18x21+21x1+21x79
N=(18+1+79)x21
N=98x21
N=2058
b: Xét ΔMNP vuông tại M có MH là đường cao
nên \(NH\cdot NP=MN^2\left(1\right)\)
Xét ΔMNK vuông tại M có MQ là đường cao
nên \(NQ\cdot NK=MN^2\left(2\right)\)
Từ (1) và (2) suy ra \(NH\cdot NP=NQ\cdot NK\)
Giải:
a) Vì +) Oy;Oz cùng ∈ 1 nửa mặt phẳng bờ chứa tia Ox
+) \(x\widehat{O}y< x\widehat{O}z\left(30^o< 150^o\right)\)
⇒Oy nằm giữa Ox và Oz
\(\Rightarrow x\widehat{O}y+y\widehat{O}z=x\widehat{O}z\)
\(30^o+y\widehat{O}z=150^o\)
\(y\widehat{O}z=150^o-30^o\)
\(y\widehat{O}z=120^o\)
b) Vì Ot là tia p/g của \(y\widehat{O}z\)
\(\Rightarrow y\widehat{O}t=t\widehat{O}z=\dfrac{y\widehat{O}z}{2}=\dfrac{120^o}{2}=60^o\)
c) Vì Om là tia đối của Oy
\(\Rightarrow y\widehat{O}m=180^o\)
\(\Rightarrow x\widehat{O}y+y\widehat{O}m=180^o\) (2 góc kề bù)
\(30^o+y\widehat{O}m=180^o\)
\(y\widehat{O}m=180^o-30^o\)
\(y\widehat{O}m=150^o\)
Vì On là tia đối của Ox
\(\Rightarrow x\widehat{O}n=180^o\)
\(\Rightarrow x\widehat{O}m+m\widehat{O}n=180^o\) (2 góc kề bù)
\(150^o+m\widehat{O}n=180^o\)
\(m\widehat{O}n=180^o-150^o\)
\(m\widehat{O}n=30^o\)
\(\Rightarrow x\widehat{O}z+z\widehat{O}n=180^o\) (2 góc kề bù)
\(150^o+z\widehat{O}n=180^o\)
\(z\widehat{O}n=180^o-150^o\)
\(z\widehat{O}n=30^o\)
\(\Rightarrow z\widehat{O}n+n\widehat{O}m=z\widehat{O}m\)
\(30^o+30^o=z\widehat{O}m\)
\(\Rightarrow z\widehat{O}m=60^o\)
Vì +) \(z\widehat{O}n+n\widehat{O}m=z\widehat{O}m\)
+) \(z\widehat{O}n=n\widehat{O}m=60^o\)
⇒On là tia p/g của \(z\widehat{O}m\)
Chúc bạn học tốt!