K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải:

O x y z t m n  

a) Vì +) Oy;Oz cùng ∈ 1 nửa mặt phẳng bờ chứa tia Ox

        +) \(x\widehat{O}y< x\widehat{O}z\left(30^o< 150^o\right)\) 

⇒Oy nằm giữa Ox và Oz

\(\Rightarrow x\widehat{O}y+y\widehat{O}z=x\widehat{O}z\) 

      \(30^o+y\widehat{O}z=150^o\) 

               \(y\widehat{O}z=150^o-30^o\) 

               \(y\widehat{O}z=120^o\) 

b) Vì Ot là tia p/g của \(y\widehat{O}z\) 

\(\Rightarrow y\widehat{O}t=t\widehat{O}z=\dfrac{y\widehat{O}z}{2}=\dfrac{120^o}{2}=60^o\) 

c) Vì Om là tia đối của Oy

\(\Rightarrow y\widehat{O}m=180^o\) 

\(\Rightarrow x\widehat{O}y+y\widehat{O}m=180^o\) (2 góc kề bù)

      \(30^o+y\widehat{O}m=180^o\) 

               \(y\widehat{O}m=180^o-30^o\) 

               \(y\widehat{O}m=150^o\)

Vì On là tia đối của Ox

\(\Rightarrow x\widehat{O}n=180^o\) 

\(\Rightarrow x\widehat{O}m+m\widehat{O}n=180^o\) (2 góc kề bù)

     \(150^o+m\widehat{O}n=180^o\) 

                \(m\widehat{O}n=180^o-150^o\) 

                \(m\widehat{O}n=30^o\) 

\(\Rightarrow x\widehat{O}z+z\widehat{O}n=180^o\) (2 góc kề bù)

    \(150^o+z\widehat{O}n=180^o\) 

               \(z\widehat{O}n=180^o-150^o\) 

               \(z\widehat{O}n=30^o\) 

\(\Rightarrow z\widehat{O}n+n\widehat{O}m=z\widehat{O}m\) 

         \(30^o+30^o=z\widehat{O}m\) 

\(\Rightarrow z\widehat{O}m=60^o\) 

Vì +) \(z\widehat{O}n+n\widehat{O}m=z\widehat{O}m\) 

     +) \(z\widehat{O}n=n\widehat{O}m=60^o\) 

⇒On là tia p/g của \(z\widehat{O}m\) 

Chúc bạn học tốt!

Bài 1: 

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HF là đường cao ứng với cạnh huyền AB, ta được:

\(AF\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)

8 tháng 4 2022

12/7 x 14/3 = 168/21 = 8

8 tháng 4 2022

\(=\dfrac{12}{7}\times\dfrac{14}{3}=8\)

6 tháng 9 2017

\(M=896+892+888+...+24\)

\(M=\frac{\left(896+24\right).219}{2}=100740\)

\(N=18.21+21+21.79\)

\(N=21.\left(18+1+79\right)=21.100\)

\(N=2100\)

6 tháng 9 2017

b,

N=18x21+21+21x79

N=18x21+21x1+21x79

N=(18+1+79)x21

N=98x21

N=2058

31 tháng 10 2021

b: Xét ΔMNP vuông tại M có MH là đường cao

nên \(NH\cdot NP=MN^2\left(1\right)\)

Xét ΔMNK vuông tại M có MQ là đường cao

nên \(NQ\cdot NK=MN^2\left(2\right)\)

Từ (1) và (2) suy ra \(NH\cdot NP=NQ\cdot NK\)