K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2022

a) Xét tam giác ABC có

BE là đường cao của AC tại E => góc BEA = góc BEC =90

CF là đường cao của AB tại F => góc CFA = góc CFB =90 

AD là đường cao của BC tại D => góc ADB = góc ADC

xét tứ giác BFEC có 

góc BFC = góc BEC = 90 

mà F và E là 2 đỉnh đối => tứ giác nội tiếp (DHNB)

=> góc EFC = góc EBC (2 góc nội tiếp chắn EC)

=> góc FEH = góc HCB ( 2 góc nội tiếp chắn BF)

Xét (O) có

góc MNC = góc EBC (2 góc nội tiếp chắn MC )

=>góc EFC = góc MNC 

mà 2 góc ở vị trí đồng vị => song song (tc)

b) Xét tứ giác BFHD có 

góc BDA + góc CFB =180 

mà F và D là 2 đỉnh kề 

=> BFHD là tứ giác nội tiếp (DHNB)

=> góc CFD= góc EBC (góc nội tiếp chắn HD)

=> Góc EFC = góc CFD (= góc EBC)

=> FC là phân giác của góc DFE

=> FH là phân giác của góc DFE (H thuộc DC)

=Xét tứ giác CDHE có 

góc ADC + góc CEB =180 

mà D và E là 2 đỉnh kề 

=> tứ giác CDHE nội tiếp 

=> góc HCB = góc HED(2 góc nội tiếp chắn HD)

=> góc FEH = góc HEB (= góc HCD) 

=> HE là phan giác góc FED

xét tma giác FED có

FH là phân giác góc EFD 

EH lag phân giác góc FED 

mà FH giao với EH tại H 

=> H là giao điểm 3 đường phân giác của tam giác EFD 

=> H là tâm đường tròn nội tiếp tam giác EFD 

c) gọi giao điểm của đường vuông góc kẻ từ A -> EF cắt EF tại K và cắt BE tại T và cắt (O) tại I 

vì TK vuông góc với EF tại K 

=> góc TKE = 90 

xét tam giác TKE và tam giác TEA có

góc T chung 

góc TKE = góc TEA (=90)

=> đồng dạng(g-g) => góc TEK = góc TAE 

Xét tứ giác nội tiếp BFEC có

 Góc TEK = góc FCB ( 2 góc nội tiếp chắn BF;T thuộc BE)

Xét (O) có

Góc TAE = góc CBI ( 2 góc nội tiếp chắn IC)

=> góc FCB = góc IBC 

mà 2 góc ở vị trí so le trong => BI // CF (tc)

mà CF vuông góc với AB 

=> IB vuông góc với AB 

=> góc IBA=90 (tc)

xét (O)

=> góc IBA=1/2 số đo cung AI (góc nội tiếp chắn AI)=> số đo cũng AI = 180

=> AI là đường kính của đường tròn tâm (O)

=> A,I,O thẳng hàng 

mà AI vuông góc với EF => đường vuông góc với EF sẽ luông đi qua điểm O 

mà O cố định => đường vuông góc với EF sẽ luông đi qua điểm O cố định

 

 

25 tháng 1 2022

Xét tứ giác AFHE có:

Góc HEA + Góc HFA = 90 độ + 90 độ = 180 độ.

Mà 2 góc này ở vị trí đối nhau.

=> Tứ giác AFHE nội tiếp đường tròn (dhnb).

 

1 tháng 5 2019

câu c nè: mik ns ý chính nhé

h bạn kẻ tiếp tuyến tại A

chứng minh đc AO vuông góc vs MN

=> OA vuông góc vs EF

do OA cố định

=> đường thẳng qua A vuông góc vs EF luôn đi qua 1 điểm cố định

do câu a va b bn làm đc rồi nên mik nghĩ bn cx hok giỏi rồi nên mik làm tắt nha 

23 tháng 4 2019

bạn ơi cho mình hỏi bài này ở đề năm bao nhiêu của thành phố nào vậy bạn?????

2 tháng 5 2019

3. Xét tứ giác BFHD có:
HFB + HDB = 90º + 90º = 180º => BFHD là tứ giác nội tiếp. ⇒ FBH = FDH (1)
Tương tự có DHEC là tứ giác nội tiếp, ⇒HCE = HDE (2)

Mà BFEC là tứ giác nội tiếp nên FCE = FBE (3)
Từ (1) (2) (3)⇒ 2ABE = FDH + HDE = FDE
Vì BFEC là tứ giác nội tiếp đường tròn tâm I, đường kính BC nên theo quan hệ giữa góc ở tâm và góc nội tiếp cùng chắn cung EF, ta có: FIE = 2.FBE = 2.ABE
⇒FIE = FDE

4.Vì BFEC là tứ giác nội tiếp nên:
ABC = 180º – FEC = AEF => ΔAEF ~ ΔABC (g.g)2016-04-23_193155

Suy ra độ dài EF không đổi khi A chạy trên cung lớn BC của đường tròn (O)
Gọi K là giao điểm thứ 2 của ED và đường tròn đường kính BC
Theo tính chất góc ngoài: FDE = DKE + DEK
Theo ý 3 và quan hệ giữa góc ở tâm và góc nội tiếp cùng chắn cung, có FDE = FIE = 2.DKE

⇒DKE = DEK => ΔDEK cân tại D => DE = DK

Chu vi ΔDEF là P = DE + EF + FD = EF + FD + DK = EF + FK
Có FK ≤ BC ( dây cung – đường kính) => P ≤ EF + BC không đổi
Dâu bằng xảy ra khi và chỉ khi FK đi qua I ⇔ D trùng I ⇔ ΔABC cân tại A.
Vậy A là điểm chính giữa của cung lớn BC

1 tháng 7 2021

A B C M N O S D H E F K P Q I J

a) Ta thấy \(\widehat{AMN}=\widehat{ABH}+\frac{1}{2}\widehat{BHQ}=\widehat{ACH}+\frac{1}{2}\widehat{CHP}=\widehat{ANM}\). Suy ra \(\Delta AMN\) cân tại A.

b) Dễ thấy tứ giác BEFC và BQPC nội tiếp, suy ra \(\widehat{HEF}=\widehat{HCB}=\widehat{HPQ}\), suy ra EF || PQ

Hiển nhiên \(OA\perp PQ\). Do đó \(OA\perp EF.\)

c) Gọi MK cắt BH tại I, NK cắt CH tại J, HK cắt BC tại S.

Vì A,K là trung điểm hai cung MN của (AMN) nên AK là đường kính của (AMN)

Suy ra \(MK\perp AB,NK\perp AC\)hay MK || CH, NK || BH

Ta có \(\Delta BHQ~\Delta CHP\), theo định lí đường phân giác và Thales thì:

\(\frac{IH}{IB}=\frac{MQ}{MB}=\frac{NP}{NC}=\frac{JH}{JC}\). Suy ra IJ || BC

Cũng từ MK || CH, NK || BH suy ra HIKJ là hình bình hành hay HK chia đôi IJ

Do vậy HK chia đôi BC theo bổ đề hình thang. Vậy HK đi qua S cố định.

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

Tâm I là trung điểm của AH

16 tháng 6 2023

 

a) Theo đề bài, dễ thấy \(\widehat{FBH}=90^o\). Do FA tiếp xúc (O) tại A nên \(\widehat{FAH}=90^o\). Từ đó suy ra \(\widehat{FBH}=\widehat{FAH}=90^o\), suy ra tứ giác FAHB nội tiếp.

b) Nhận thấy \(\widehat{FAD}=\widehat{FBA}\) vì chúng lần lượt là góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp chắn cung AD. Suy ra \(\Delta FAD~\Delta FBA\left(g.g\right)\) \(\Rightarrow\dfrac{FA}{FB}=\dfrac{FD}{FA}\) \(\Rightarrow FA^2=FB.FD\). Tương tự, ta có \(GA^2=GE.GC\). Cộng theo vế 2 hệ thức vừa tìm được, suy ra đpcm.

c) Ta có \(\widehat{ADI}=\widehat{AEG}=\widehat{ABC}=\widehat{AFH}=\widehat{AFI}\) nên tứ giác AFDI nội tiếp, suy ra \(\widehat{FAD}=\widehat{FID}\). Mà \(\widehat{FID}=\widehat{OIH}\) còn \(\widehat{FAD}=\widehat{FBA}=\widehat{FHA}=\widehat{OHI}\) nên từ đó suy ra \(\widehat{OIH}=\widehat{OHI}\) hay tam giác OHI cân tại O hay \(OI=OH\). Hoàn toàn tương tự, ta có \(OJ=OH\), suy ra đpcm.

d) Ta có \(\widehat{HIC}=\widehat{AHF}=90^o-\widehat{AFH}=90^o-\widehat{ABC}=90^o-\widehat{GAC}\) \(=90^o-\widehat{GHC}=\widehat{HGC}\) nên tứ giác HIGC nội tiếp. Do đó \(\widehat{GIH}=180^o-\widehat{HCG}=90^o\) hay \(GI\perp HF\) tại I. Tương tự, ta có \(FJ\perp HG\) tại J. Mặt khác, \(HA\perp FG\) tại A nên HA, FJ, GI sẽ đồng quy tại trực tâm M của tam giác FGH.

 Ta sẽ chứng minh M di chuyển trên DE (dễ dàng kiểm tra DE cố định). Thật vậy, dễ thấy 5 điểm A, M, I, D, F cùng nằm trên 1 đường tròn, do đó \(\widehat{DMI}=\widehat{DFI}=90^o-\widehat{BHF}\). Tương tự, ta có \(\widehat{JME}=90^o-\widehat{GHC}\). Lại có tứ giác IMJH nội tiếp nên \(\widehat{IMJ}=180^o-\widehat{IHJ}=180^o-\widehat{FHG}\). Từ đây suy ra \(\widehat{DMI}+\widehat{IMJ}+\widehat{JME}=360^o-\left(\widehat{BHF}+\widehat{FHG}+\widehat{GHC}\right)=180^o\), hay D, M, E thẳng hàng, tức là M thuộc DE. Ta có đpcm.