1. a) So sánh 22013 và 31344
b) Tính A=1/4*9+1/9*14+...+1/64*69
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
A = \(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{64.69}\)
5A = \(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{64.69}\)
5A = \(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{64}-\frac{1}{69}\)
5A = \(\frac{1}{4}-\frac{1}{69}\)
5A = \(\frac{65}{276}\)
A = \(\frac{65}{276}:5\)
A = \(\frac{13}{276}\)
a) Quy đồng pso và tính như bthg (4824829/6350400)
b) Vì 4814819 < 6350400 => A < 1
Ta có \(\left(9+1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\frac{1}{8}\left(9-1\right)\left(9+1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\frac{1}{8}\left(9^2-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
cứ như thế
\(=\frac{1}{8}\left(9^{64}-1\right)< 9^{64}-1\)=>đpcm
Bài 1:
a: -8/12<0<-3/-4
b: -56/24<0<7/3
c: 4/25<1<15/13
=>-4/25>-15/13
Bài 2:
a: =-60/45=-4/3
b: =4/15-3/2-8/5=8/30-45/30-48/30=-85/30=-17/6
a: -15/37>-25/37
b: -13/21=-26/42
-9/14=-27/42
mà -26>-42
nên -13/21>-9/14
c: -49/-63=7/9
56/80=7/10
=>-49/-63>56/80
d: 3/14=1-11/14
4/15=1-11/15
mà 11/14>11/15
nên 3/14<4/15
13 /276