cho hình chữ nhậ ABCD trên cạnh DC lý điểm E bất kì trên tia CB lấy điểm F sao cho DE=BF
a,chứng minh tm giac AEF VUÔNG
B,Gọi I là trung điểm của EF chứng minh I thuộc BD
ý đầu em làm được rồi ạ còn ý b khó quá mong các anh chị thỳ cô giúp em
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) DDAE = DBAF (c.g.c)
⇒ D A E ^ = B A F ^ và AE = AF
Mà E A D ^ + E A B ^ = 90 0 = > E A B ^ + B A F ^ = 90 0
Þ DAEF vuông cân tại A.
b) DEAF vuông cân nên IA = IE = FI (1); DCFE vuông có IC là đường trung tuyến Þ IE = IC = IF (2);
Từ (1) và (2) suy ra Þ IA = IC nên I thuộc trung trực của AC hay I thuộc BD.
c) Do K đối xứng với A qua I nên I là trung điểm của AK.
Mà I là trung điểm của EF(gt) nên AFKE là hình bình hành, DAEF vuông cân tại A nên AI ^ EF.
Vậy AFKE là hình vuông.
a, Xét 2 tam giác vuông ΔADE và ΔABF có:
AD = AB (ABCD là hình vuông); DE = BF (gt)
⇒ ΔADE = ΔABF (2 cạnh góc vuông)
⇒ AE = AF (1) và ˆDAEDAE^ = ˆBAFBAF^
mà ˆDAEDAE^ + ˆBAEBAE^ = 90o90o
⇒ ˆBAFBAF^ + ˆBAEBAE^ = 90o90o
⇒ ˆEAFEAF^ = 90o90o (2)
Từ (1) và (2) suy ra ΔEAF vuông cân (đpcm)
b, ABCD là hình vuông ⇒ BA = BC và DA = DC
⇒ BD là đường trung trực của AC (3)
ΔEAF vuông cân tại A có AI là trung tuyến ứng với cạnh huyền
⇒ AI = 1212EF
ΔCEF vuông tại C có CI là trung tuyến ứng với cạnh huyền
⇒ CI = 1212EF
⇒ CI = AI ⇒ I thuộc đường trung trực của AC (4)
Từ (3) và (4) suy ra: I thuộc BD (đpcm)
d, Tứ giác AEKF có 2 đường chéo AK, EF cắt nhau tại I là trung điểm mỗi đường
⇒ AEKF là hình bình hành
mà AE = AF và ˆEAFEAF^ = 90o90o
⇒ AEKF là hình vuông (đpcm)
a) Xét \(\Delta\)ADE vuông tại D và \(\Delta\)ABF vuông tại B có:
DE=BF ( giả thiết)
AD=AB( ABCD là hình vuông)
suy ra: \(\Delta\)ADE=\(\Delta\)ABF ( cgv-cgv)
=>AE=AF( 2 cạnh tương ứng )
=> \(\Delta\)AEF cân tại A (1)
\(\Delta\)ADE=\(\Delta\)ABF(cmt)
=> góc AED= góc AFB mà:
góc FAB+ góc AFB=90o
=>góc AED+ góc AFB=90o
mà góc BAE= góc AED ( AB//CD và 2 góc đó là 2 góc so le trong)
nên: góc BAE+góc AFB=90o
=> góc EAF= 90o(2)
từ (1) và (2) suy ra:
\(\Delta\)AEF vuông cân tại A
b)gọi H là giao điểm của AB và EF
ta có:
AB//DC ( ABCD là hình vuông)
=>góc BHI= góc DEI (so le trong)
và góc HBI= góc EDI( so le trong)
mà góc BHI và góc HBI nằm trong \(\Delta\)HBI
góc DEI và góc EDI nằm trong \(\Delta\)EDI nên:
góc HIB= góc DIE
mà I thuộc EF hay EI và FI là 2 tia đối nhau:
=> góc HIB đối đỉnh với góc DEI
=> BI và EI là 2 tia đối nhau
=>I thuộc BD