K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

Suy ra: AD=ED

b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

c: Ta có: ΔADF=ΔEDC

nên DF=DC và AF=EC

Ta có: BA+AF=BF

BE+EC=BC

mà BA=BE

và AF=EC

nên BC=BF

hay B nằm trên đường trung trực của CF(1)

Ta có: DF=DC

nên D nằm trên đường trung trực của CF(2)

Từ (1) và (2) suy ra BD\(\perp\)CF

a: ΔABD vuông tại A

=>BA<BD

b: Xét ΔCAE vuông tại A và ΔCAB vuông tại A có

CA chung

AE=AB

=>ΔCAE=ΔCAB

c: BA<BC

=>AD<CD

30 tháng 12 2021

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{A}\) chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

Bài 1. Cho tam giác ABC có AB = AC và đường phân giác AD.a, Chứng minh AD vuông góc với BC.b, Lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho BE = CF. Chứng minh rằngDA là tia phân giác của góc EDF.Bài 2. Cho tam giác ABC (AB = AC). BD và CE là hai phân giác của tam giác.a) Chứng minh: BD = CE.b) Xác định dạng của ADE.c) Chứng minh: DE // BC.Bài 3. Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA, trêntia BA...
Đọc tiếp

Bài 1. Cho tam giác ABC có AB = AC và đường phân giác AD.
a, Chứng minh AD vuông góc với BC.
b, Lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho BE = CF. Chứng minh rằng
DA là tia phân giác của góc EDF.
Bài 2. Cho tam giác ABC (AB = AC). BD và CE là hai phân giác của tam giác.
a) Chứng minh: BD = CE.
b) Xác định dạng của ADE.
c) Chứng minh: DE // BC.
Bài 3. Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA, trên
tia BA lấy điểm F sao cho BF = BC. Kẻ BD là phân giác của góc ABC (D  AC). Chứng
minh rằng:
a) DE  BC ; AE  BD. b) AD < DC.
c) ADF = EDC. d) E, D, F thẳng hàng.
Bài 4. Cho tam giác ABC có AB < AC, phân giác AM. Trên tia AC lấy điểm N sao cho
AN = AB. Gọi K là giao điểm của các đường thẳng AB và MN. Chứng minh rằng:
a) MB = MN. b) MBK = MNC.
c) AM  KC và BN // KC. d) AC - AB > MC - MB.
Bài 5. Cho  ABC cân tại A có góc A nhọn, hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh AE = AD
b) Chứng minh AH là phân giác của góc BAC và AH là trung trực của ED.
c) So sánh HE và HC.
d) Qua E kẻ EF // BD (F AC), tia phân giác góc ACE cắt ED tại I. Tính góc EFI.

1

Bài 1: 

a: Ta có ΔABC cân tại A
mà AD là đường phân giác ứng với cạnh đáy BC

nên AD⊥BC

b: Ta có: AE+BE=AB

AF+FC=AC

mà BE=CF

và AB=AC

nên AE=AF

Xét ΔAED và ΔAFD có 

AE=AF

\(\widehat{EAD}=\widehat{FAD}\)

AD chung

Do đó: ΔAED=ΔAFD

Suy ra: \(\widehat{EDA}=\widehat{FDA}\)

hay DA là tia phân giác của \(\widehat{EDF}\)

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔADB=ΔAEC

=>BD=CE

b: ΔABD=ΔACE

=>\(\widehat{ABD}=\widehat{ACE}\)

=>\(\widehat{OBE}=\widehat{OCD}\)

ΔABD=ΔACE

=>AD=AE

AE+EB=AB

AD+DC=AC

mà AE=AD và AB=AC

nên EB=DC

Xét ΔOEB vuông tại E và ΔODC vuông tại D có

EB=DC

\(\widehat{OBE}=\widehat{OCD}\)

Do đó: ΔOEB=ΔODC

c: ΔOEB=ΔODC

=>OB=OC

Xét ΔABO và ΔACO có

AB=AC

BO=CO

AO chung

Do đó: ΔABO=ΔACO

=>\(\widehat{BAO}=\widehat{CAO}\)

=>AO là phân giác của góc BAC

d: Ta có: ΔABC cân tại A

mà AH làđường trung tuyến

nên AH là phân giác của góc BAC

mà AO là phân giác của góc BAC(cmt)

và AO,AH có điểm chung là A

nên A,O,H thẳng hàng

25 tháng 3 2022

giúp mình với

 

 

a: BC=15cm

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

c: Ta có: DA=DE

mà DE<DC

nên DA<DC

d: Xét ΔBEI vuông tại E và ΔBAC vuông tại A có

BE=BA

\(\widehat{EBI}\) chung

DO đó: ΔBEI=ΔBAC

Suy ra: BI=BC

hay ΔBIC cân tại B

5 tháng 5 2016

vẽ AH thế nào với BC

19 tháng 1 2017

1. A B C D F 1 2 2 1 1 2. A B H D M C

1.Lấy F trên AC sao cho AB = AF mà AB < AC => AF < AC => F nằm giữa A,C

\(\Delta ADB,\Delta ADF\)có AD chung ; AB = AF ;\(\widehat{A_1}=\widehat{A_2}\)(AD là phân giác góc BAC)\(\Rightarrow\Delta ADB=\Delta ADF\left(c.g.c\right)\)

\(\Rightarrow\widehat{D_1}=\widehat{D_2}\); DB = DF mà\(\widehat{F_1}>\widehat{D_1};\widehat{D_2}>\widehat{C}\)(\(\widehat{F_1};\widehat{D_1}\)lần lượt là góc ngoài\(\Delta ADF,\Delta ADC\))nên\(\widehat{F_1}>\widehat{C}\)

\(\Delta DFC\)\(\widehat{F_1}>\widehat{C}\)nên DC > DF = DB.Vậy BD < CD

2.Theo chứng minh câu 1,ta được BD < CD

\(\Rightarrow BC=BD+CD=2BD+CD-BD\Rightarrow2BD< BC\Rightarrow BD< \frac{BC}{2}\left(=BM\right)\)

=> D nằm giữa B,M => AD nằm giữa AB,AM (1)

\(\Delta ABC\)có AB < AC nên\(\widehat{B}>\widehat{C}\)\(\widehat{BAH}=90^0-\widehat{B};\widehat{CAH}=90^0-\widehat{C}\)(vì\(\Delta AHB,\Delta AHC\)vuông tại H)

\(\Rightarrow\widehat{BAH}< \widehat{CAH}\)

\(\Rightarrow\widehat{BAC}=\widehat{BAH}+\widehat{CAH}=2\widehat{BAH}+\widehat{CAH}-\widehat{BAH}\Rightarrow2\widehat{BAH}< \widehat{BAC}\Rightarrow\widehat{BAH}< \frac{\widehat{BAC}}{2}\left(=\widehat{BAD}\right)\)

=> AH nằm giữa AB,AD (2).Từ (1) và (2),ta có đpcm

3 tháng 8 2018

làm như ngu