,Cho tam giác đều ABC.Trên tia đối của tia CB lấy điểm D.Trong nửa mp bờ BC có chứa điểm A .Kẻ các tia Cx//AB;Dy//AC.Các tia Cx và Dy cắt nhau tại E.Chứng minh rằng:
a,Tam giác ECD là tam giác đều(đã làm)
b,AD=BE(đã làm)
c,Góc BIC =2BAC,trong đó I là giao điểm của AD và BE
GIÚP MIK VS ,CẢM ƠN NHÌU
a) Do EC// AB nên \(\widehat{ECD}=\widehat{ABC}=60^o\)
Do ED// AC nên \(\widehat{EDC}=\widehat{ACB}=60^o\)
Xét tam giác ECD có \(\widehat{ECD}=\widehat{EDC}=60^o\Rightarrow\widehat{CED}=60^o\)
Suy ra ECD là tam giác đều.
b) Ta có :
\(\widehat{BCE}=\widehat{BCA}+\widehat{ACE}=60^o+\widehat{ACE}=\widehat{ECD}+\widehat{ACE}=\widehat{ACD}\)
Xét tam giác BCE và tam giác ACD có:
BC = AC (gt)
CD = CE (Do tam giác ECD đều)
\(\widehat{BCE}=\widehat{ACD}\) (cmt)
\(\Rightarrow\Delta BCE=\Delta ACD\left(c-g-c\right)\)
\(\Rightarrow BE=AC\)
c) Do \(\Delta BCE=\Delta ACD\Rightarrow\widehat{CBI}=\widehat{CAI}\)
Vậy thì \(\widehat{CBJ}+\widehat{BJC}=\widehat{JAI}+\widehat{JAI}\)
\(\Rightarrow180^o-\left(\widehat{CBJ}+\widehat{BJC}\right)=180^o-\left(\widehat{JAI}+\widehat{JAI}\right)\)
\(\Rightarrow\widehat{AIJ}=\widehat{JCB}=60^o\)
\(\Rightarrow\widehat{BID}=180^o-60^o=120^o\) (Hai góc kề bù)
\(\Rightarrow\widehat{BID}=2\widehat{BAC}\)