CM nếu a/b=b/a thì a^2+b^2/b^2+d^2=a/d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, Ta có \(m=a+b+c\)
\(\Rightarrow am+bc=a\left(a+b+c\right)+bc=a\left(a+b\right)+ac+bc=\left(a+c\right)\left(a+b\right)\)
CMTT \(bm+ac=\left(b+c\right)\left(b+a\right)\);\(cm+ab=\left(c+a\right)\left(c+b\right)\)
Suy ra \(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)
a² + b² + c² + d² + e² ≥ a(b + c + d + e)
Ta có: a² + b² + c² + d² + e²
= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²)
Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab
Tương tự ta có:
. a²/4 + c² ≥ ac
. a²/4 + d² ≥ ad
. a²/4 + e² ≥ ae
--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae
<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e) --> đ.p.c.m
Dấu " = " xảy ra <=> a/2 = b = c = d = e
P/s: Hơi hơi dễ nhỉ
ta có: \(\frac{a}{b}=\frac{b}{d}\Rightarrow\frac{ab}{bd}=\frac{a^2}{b^2}=\frac{b^2}{d^2}\) (*)
mà \(\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{b^2+d^2}\)
Từ (*) \(\Rightarrow\frac{ab}{bd}=\frac{a^2+b^2}{b^2+d^2}\)
\(\Rightarrow\frac{a}{d}=\frac{a^2+b^2}{b^2+d^2}\left(đpcm\right)\) ( do \(\frac{ab}{bd}=\frac{a}{d}\))
Đặt \(\frac{a}{b}=\frac{b}{d}=t\Leftrightarrow\frac{a}{b}.\frac{b}{d}=t^2=\frac{a}{d}\)
\(\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{b^2+d^2}=t^2\)
Ta có đpcm