Cho (O)đường kính AB,dây cung AC, tiếp tuyến Ax.Tia phân giác góc CAx cắt (O) tại E,cắt BC tại D.Tia BE cắt Ax tại M
a) C/m: 4 điểm A,B,D,M cùng thuộc 1 đường tròn
b)Gọi K là giao điểm của EC và MD. C/m: 4 điểm A,C,D,K cùng thuộc 1 đường tròn
C) C/m: 4 điểm B,C,M,K cùng thuộc 1 đường tròn
*Lưu ý: Bài này giải theo dạng Cung chứa góc,mọi người giúp mình giải và ghi đầy đủ nha.Mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Do \(\widehat{ACB}\) là góc nt chắn nửa đường tròn \(\Rightarrow\widehat{ACB}=90^0\)
\(\Rightarrow\widehat{ACD}=90^0\Rightarrow\Delta ACD\) vuông tại C
\(\Rightarrow\widehat{ADC}+\widehat{DAC}=90^0\) (1)
Lại có \(\widehat{DAC}=\widehat{DAx}\) (do AD là phân giác)
\(\widehat{BAE}+\widehat{DAx}=90^0\) (Ax là tiếp tuyến tại A)
\(\Rightarrow\widehat{BAE}+\widehat{DAC}=90^0\) (2)
(1);(2) \(\Rightarrow\widehat{ADC}=\widehat{BAE}\)
\(\Rightarrow\Delta ABD\) cân tại B
b.
\(\widehat{AEB}\) là góc nt chắn nửa đường tròn \(\Rightarrow\widehat{AEB}=90^0\Rightarrow AE\perp BE\)
\(\Rightarrow BE\) là đường cao trong tam giác BAD
Mà tam giác BAD cân tại B \(\Rightarrow BE\) đồng thời là trung tuyến
\(\Rightarrow E\) là trung điểm AD
Lại có O là trung điểm AB
\(\Rightarrow OE\) là đường trung bình tam giác ABD
\(\Rightarrow OE||BD\)
c.
Xét tam giác ABD có: \(AC\perp BD;BE\perp AD\)
\(\Rightarrow I\) là trực tâm tam giác ABD
\(\Rightarrow DI\) là đường cao thứ 3
\(\Rightarrow DI\perp AB\)
d.
Ta có: \(\widehat{BAC}+\widehat{CAx}=90^0\)
\(\Rightarrow\widehat{BAC}+2.\widehat{CAE}=90^0\)
\(\Rightarrow\widehat{CAE}=\dfrac{90^0-20^0}{2}=35^0\)
\(\Rightarrow\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=20^0+35^0=55^0\)
Xét tam giác vuông ABE có:
\(cos\widehat{BAE}=\dfrac{AE}{AB}\Rightarrow AE=AB.cos\widehat{BAE}=2.cos55^0\approx1,15\left(cm\right)\)
Em tham khảo tại link dưới đây nhé.
Câu hỏi của My Trấn - Toán lớp 9 - Học toán với OnlineMath
Với câu c, khi đã có IK // AD thì vận dụng Ta let ta có ngay \(\frac{IC}{AD}=\frac{IK}{AD}\Rightarrow IC=IK\)
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Xét (O) có
DC là tiếp tuyến
DA là tiếp tuyến
Do đó: DC=DA
Xét (O) có
EC là tiếp tuyến
EB là tiếp tuyến
Do đó: EC=EB
Ta có: DC+CE=DE
nên DE=DA+EB
b: Xét tứ giác ADCO có \(\widehat{DAO}+\widehat{DCO}=180^0\)
nên ADCO là tứ giác nội tiếp
=>\(\widehat{ADO}=\widehat{ACO}\)
mà \(\widehat{ACO}=\widehat{CAB}\)
nên \(\widehat{ADO}=\widehat{CAB}\)